| 1. | The pattern of the finite-difference coefficients is known . 有限差分系数的图式是已知的。 |
| 2. | The finite-difference computation must be convergent and stable . 有限差分计算必须收敛和稳定。 |
| 3. | Taylor's exposition based on what we would call finite differences . 泰勒的阐述是建立在我们叫作有限差分的基础上的。 |
| 4. | Previous chapters have dealt with the derivation of systems of difference equations . 前面几章已经论述了差分方程组的推导。 |
| 5. | We will say that a finite-difference method is convergent if this condition is satisfied . 若满足了这个条件,我们就说有限差分法是收敛的。 |
| 6. | To maintain a logical presentation we start with the simplest finite-difference scheme . 为了按逻辑来表达,我们从最简单的有限差分格式开始。 |
| 7. | The difference equations derived will now contain integrals with respect to time because of the convolutions involved . 由于包含卷积,所推导的差分方程包括对时间的积分。 |
| 8. | When the rotation at the ends of a loaded strut is restrained, the equation cannot be used in the finite-difference solution . 当受载支柱的端点转动受到约束时,方程不能用于有限差分解。 |
| 9. | Alternating direction explicit difference approximation 交替方向显示差分近似法 |
| 10. | Difference property of fractional integration serial data 单整序列数据的差分性质 |