| 1. | We also show that the unit steplength is essentially accepted 并证明算法的全局收敛性和超线性收敛性。 |
| 2. | Under mild conditions , we prove the global and superlinear convergence of the method 在较弱的条件下,得到了算法的全局收敛性及其超线性收敛性。 |
| 3. | A feasible sqp algorithm with superlinear convergence for inequality constrained optimization 不等式约束优化一个具有超线性收敛的可行序列二次规划算法 |
| 4. | Using the comparison principle , it is proved that the proposed method is of superlinear convergence 利用比较原理,间接证明该算法是一种具有超线性收敛性的近似牛顿法。 |
| 5. | We show the proposed algorithm is globally convergen t and locally fast convergent rate even if conditions are reasonalbe 在合理的假设条件下,我们证明了这一算法不仅具备整体收敛性,而且具有超线性收敛速率。 |
| 6. | The convergence of the refined non - interior continuation method for ncps is analyzed , the same global linear convergence as chen - xiu ' s is obtained 得到了与chen - xiu同样的全局线性收敛,推广了chen - xiu的局部超线性收敛到局部二次收敛。 |
| 7. | Moreover , we show that if the second order sufficient conditions holds at a solution of the problem , then the method is 2 - step superlinearly convergent 而且,我们证明:若在问题的解处二阶充分条件成立,则相应的sqp算法具有2步超线性收敛性。 |
| 8. | We show that the hybrid method is globally and superlinearly convergent for nonzero residual problems and globally and quadratically for zero resi dual problems 因此,该杂交方法对于零残量问题是二阶收敛的,而对于非零残量问题是超线性收敛的。 |
| 9. | Lc1 unconstrained optimization problem was discussed in the second chapter , giving a new trust region method and proving its global convergence and superlinear convergence under some mild conditions 给出了一个新的信赖域算法,并在一定的条件下证明了算法的全局收敛性和局部超线性收敛性。 |
| 10. | In this paper , we give a class of superlincarly convcngent algorithms for nonlinear programming problems with linear constrained by combining non - quasi - newton methods with the projection methods 本文结合文[ 2 ]中的非拟牛顿法与投影类算法,给出了求解线性约束非线性优化问题的一类具有超线性收敛的投影非拟牛顿算法。 |