| 1. | We also show that the unit steplength is essentially accepted 并证明算法的全局收敛性和超线性收敛性。 |
| 2. | A class of global convergent memory gradient methods and its linear convergence rate 一类全局收敛的记忆梯度法及其线性收敛性 |
| 3. | Under mild conditions , we prove the global and superlinear convergence of the method 在较弱的条件下,得到了算法的全局收敛性及其超线性收敛性。 |
| 4. | A feasible sqp algorithm with superlinear convergence for inequality constrained optimization 不等式约束优化一个具有超线性收敛的可行序列二次规划算法 |
| 5. | Using the comparison principle , it is proved that the proposed method is of superlinear convergence 利用比较原理,间接证明该算法是一种具有超线性收敛性的近似牛顿法。 |
| 6. | We show the proposed algorithm is globally convergen t and locally fast convergent rate even if conditions are reasonalbe 在合理的假设条件下,我们证明了这一算法不仅具备整体收敛性,而且具有超线性收敛速率。 |
| 7. | The convergence of the refined non - interior continuation method for ncps is analyzed , the same global linear convergence as chen - xiu ' s is obtained 得到了与chen - xiu同样的全局线性收敛,推广了chen - xiu的局部超线性收敛到局部二次收敛。 |
| 8. | Moreover , we show that if the second order sufficient conditions holds at a solution of the problem , then the method is 2 - step superlinearly convergent 而且,我们证明:若在问题的解处二阶充分条件成立,则相应的sqp算法具有2步超线性收敛性。 |
| 9. | Without the strict feasibility of the initial points and iteration points , the algorithm is shown to possess both polynomial - time complexity and q - linear convergence 该算法不要求初始点及迭代点的可行性且具有q -线性收敛速度和多项式时间复杂性。 |
| 10. | We show that the hybrid method is globally and superlinearly convergent for nonzero residual problems and globally and quadratically for zero resi dual problems 因此,该杂交方法对于零残量问题是二阶收敛的,而对于非零残量问题是超线性收敛的。 |