| 1. | Nontrivial solution for a semilinear elliptic equation 一类超线性椭圆方程的非平凡解 |
| 2. | Nontrivial solution for an elliptic equation with singularity 带奇点的二阶椭圆型方程的非平凡解 |
| 3. | A high - order finite diference scheme for nonlinear convection - diffusion problems on nonuniform grids 指数的半线性椭圆系统的非平凡解 |
| 4. | The solvability and the existence of solution for a wave equation with periodic condition under strong resonance are studied in the paper 摘要本文研究波动方程边值问题当非线性项满足强共振条件或为周期函数时的可解性和非平凡解的存在性。 |
| 5. | The existence of solutions for a class of elliptic systems is denoted , by mountain pass lemma , the existence result for system of more general operator including p - laplacian , is obtained 摘要利用经典的山路引理,证明了在一般形式的算子下,椭圆型方程组非平凡解的存在性。 |
| 6. | A linear impulsive delay difference equation is considered , and snfficient conditions are obtained for the oscillation of nontrivial solutions and asymptotic behaviors of non - oscillatory solutions 摘要研究了一类线性脉冲时滞差分方程,并给出方程非振动解的渐近性态和所有非平凡解振动的判据。 |
| 7. | First , based on the related theories of the ordinary differential equations , we discuss the existence of the non - trivial solutions to a class of boundary value equations discussed in this paper 首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题。 |
| 8. | We introduce liapunov - schmidt reduction method to investigate the bifurcation of a class of nonlinear reaction - diffusion equations in developmental biology . near the bifurcation point we obtain nontrivial solutions branch emitted from the trivial solution 首先,我们引入liapunov - schmidt约化方法,应用到该方程得到该非线性微分方程在分歧点附近分歧方程的解析近似表达式及其非平凡解的渐进表达式。 |
| 9. | In this paper , the recent achievements of a non - trivial solution in p - laplace poblems and p - biharmonic poblems with critical growth are related . on the base of them , i study the problem on the more general condition , and obtain some new outcomes 本文首先就临界增长的p - laplace和p -双调和方程的非平凡解这两方面近年来的研究成果作了简单的叙述。在此基础上,本文作者在更一般条件下对此作了一定的研究,获得一些新结论。 |
| 10. | In the second part , we consider a class of reaction - diffusion equations in developmental biology . near the bifurcation points , using the liapunove - schmidt reduction process , we obtain the nontrivial solution branches which are bifurcated from the trival solution when the parameter changes 然后考虑发育生物学中一类反应扩散方程组,在分歧点附近利用liapunov - schmidt约化技巧,得到了从平凡解分歧出来的随参数变化的非平凡解枝以及它们的近似解析表达。 |