| 1. | The series developed below are sensible . 下面所导出的级数是切合实际的。 |
| 2. | This series will converge when|x|<1. 当x1时这个级数收敛。 |
| 3. | We may cut off the series after two or three terms . 我们可删去两项或三项之后的级数。 |
| 4. | The eighteenth century mathematicians used series indiscriminately . 十八世纪数学家们不加辩加地使用级数。 |
| 5. | This very slowly converging series was known to leibniz in 1674 . 这个收敛很慢的级数是莱布尼茨在1674年得到的。 |
| 6. | Convergence and divergence of infinite series depend upon this concept . 无穷级数的收敛性与发散性与此概念有关。 |
| 7. | Prove that no four consecutive binomial coefficients can be in arithmetic progression . 证明不存在四个连续的二项系数成算术级数。 |
| 8. | We will not go into detail about fourier series, but will simply look at one example . 我们将不涉及付里叶级数的细节,而将只考察一个例子。 |
| 9. | The number of runs is a statistic with its own special sampling distribution and its own test . 连续级数是一个具有独特抽样分布和检验方法的统计量。 |
| 10. | The fourier transform is an integral expression for a fourier series applied to an infinitely long signal . 傅里叶变换式是对博里叶级数的一种积分表达式。 |