| 1. | Notes on oscillation for certain second order differential equations 关于一类二阶微分方程的振动性的注记 |
| 2. | A note on oscillation of a kind of second order functional differential equations 关于一类二阶泛函微分方程的振动性的注记 |
| 3. | Research of oscillatory solution of a kind of nonlinear integral equation with time delay 具有时滞的非线性积分方程振动性的研究 |
| 4. | Oscillation criteria related to integral averaging technique for quasilinear elliptic equations 二阶拟线性椭圆型方程振动性的积分平均方法 |
| 5. | Oscillation of second order elliptic differential equations by methods of the sequence of functions 二阶椭圆型微分方程振动性的函数序列方法 |
| 6. | Sufficient conditions to guarantee the oscillations of higher order differential equation with impulses are obtained . we popularize the results of the lower order differential equation with impulses 所得结论是对低阶脉冲微分方程解的振动性的结论的推广。 |
| 7. | Consider the second - order semi - linear neutral difference equation ( the equation is abbreviated ) ( 1 ) the sufficient conditions are established for oscillation of the solutions of ( 1 ) 摘要考虑二阶半线性中立型差分方程(方程式略) ( 1 )给出了方程( 1 )的解的振动性的充分条件。 |
| 8. | In this paper , we establish a comparison theorem on the oscillation of unbounded delay difference equations and some delay differential equations , and get a reasonable criterion for judging the oscillation of the former 摘要建立了一类具有无界时滞点连续变量的差分方程与某类时滞微分方程振动性的比较定理,进而获得前者的振动性的一些充分性判据。 |
| 9. | We investigate in section 1 the oscillation and nonoscillation of nonlinear neutral difference equation , ith continuous arguments , and get a sharp condition of the oscillation . some comparison theorems are studied for the oscillation and nonoscillation of linear neutral difference equation , ith continuous arguments in section 2 . in section 3 , e investigate the existence and asymptotic behavior of nonoscillatory solutions of second order neutral delay difference equation 第一节中研究具有连续变量的非线性中立型差分方程的振动性与非振动性,得到了振动性的“ sharp ”条件:第二节研究了具有连续变量的线性中立型差分方程振动性与非振动性的一些比较结果;在第三节我们研究了二阶中立型时滞差分方程的非振动解的存在性与渐近行为; g |
| 10. | However , from the definition of oscillation , the oscillation of system ( 1 ) is only an interval behavior . therefore , it is natural to think that we can study the oscillatory behavior of system ( 1 ) only on a sequence of subiiitervals of [ t _ ( 0 ) , ) , which weakens the restriction to p ( t ) , q ( t ) to a great extent . in chapter 2 但另一方面,按照振动性的定义,系统( 1 )的振动性又仅仅是一个区间性质,因此,很自然地想到,只要在[ t _ 0 , )的一系列子区间上来研究系统( 1 )的振动性,这样就大大降低了对p ( t ) , q ( t )的限制。 |