| 1. | Second order parallel tensors on quasi - constant curvature manifolds 拟常曲率流形上的二阶平行张量 |
| 2. | Some results on metric averaging in space with nonnegative constant curvature 关于非负常曲率空间中度量平均的几个结果 |
| 3. | On the hypersurfaces with constant mean curvature in a quasi constant curvature space 关于拟常曲率空间中具有常平均曲率超曲面 |
| 4. | Submanifolds with flat connection of normal bundle in a riemannian manifold of quasi constant curvature 拟常曲率黎曼流形中的法联络平坦子流形 |
| 5. | On submanifolds with parallel mean curvature in a riemannian manifold of quasi constant curvature 拟常曲率黎曼流形中具有平行平均曲率向量的子流形 |
| 6. | On the submanifolds with parallel mean curvature in a eiemannian manifold of quasi constant curvature 拟常曲率黎曼流形中具有平行平均曲率向量的子流形 |
| 7. | In this paper , we studied the co - dimension decreasing of submanifold . we point out that on certain condition , the co - dime nsion can be reduced to 1 本文研究了常曲率空间子流形余维数减少的问题,说明了在一定条件下,余维数可以减少到1 |
| 8. | Lastly the above stiffness matrix , the nodal variables of which are the dual of stress functions , is replaced by a new one with simple displacements vector regarded as unknown . such finite element satisfies homogeneous equilibrium equations and can pass the patch test as long as the original plane elasticity element can pass the corresponding patch test 所得到的板弯曲单元在单元内部满足齐次平衡方程,并且只要原始平面弹性单元能通过常应变分片试验则转换得到的板单元一定能通过常曲率分片试验。 |
| 9. | Lots of concrete examples are ( , ) - metrics . and one of fundamental problems in finsler geometry is to find and study finsler metrics with constant ( flag ) curvature . on the basic , we majarly study the following problems in present paper : ( a ) to the property of a class of ( , ) - metrics in which is parallel with respect to riemann metric a and riemann metric a is of constant curvature , we obtain the following theorem4 . 3 let f ( , ) be a positive definite metric on the manifold m ( dimm > 3 ) 在finsler几何中,我们现在已知的finsler度量已经很多了,但大多数具体的例子主要都集中在( , ) ?度量中,又在finsler几何中一个基本的问题就是去发现和研究具有常曲率的finsler度量,基于这些本文主要研究了以下一些问题: ( a )一类关于是平行的并且riemann度量具有常曲率的( , ) ?度量的特殊性质,得到了如下的定理4 |
| 10. | The method removes the bottleneck of transformation from complementary energy element with stress functions vector to potential energy element with simple displacements vector . what is the most important about this method is that it never destroys the original convergence of the transformed plane elasticity element and that it can maintain the original precision 本文方法列式简单,所得板弯曲单元皆可通过常曲率分片试验、有正确的刚体运动模式并具有与原始平面弹性单元相称的良好精度,从而达到了将平面弹性单元转化为板弯曲单元的目的。 |