| 1. | Cohomology groups of 3 - lie algebras 代数的上同调群 |
| 2. | Cupproduct of thecohomology group 上同调群的上积 |
| 3. | Generalized cohomology theory 泛上同调群理论 |
| 4. | Singular cohomology group 奇异上同调群 |
| 5. | The relationship of simple connectedness and 1 hochschild cohomology group is very clear for representation - finite algebras 单连通性和一次hochschild上同调群之间的联系,在有限表示型的情形已经很清楚了。 |
| 6. | Especially , we compute the hochschild cohomology of endomorphism algebras of complete exceptional sequence of the path algebra whose quiver has 3 vertices and has no orientation 第四章中,我们主要研究具有三个点的且不带方向圈的有向箭图的路代数上的完备例外序列的自同态代数的hochschild上同调群。 |
| 7. | Lower degree hochschild cohomology group have a very concrete interpretation of classic algebraic structure , especially , there are inner connection between 1 hochschild cohomology group and simply connected algebra 低次的hochschild上同调群对于典型的代数的结构有具体的解释,尤其是一次的hochschild上同调群与单连通代数有着内在的联系。 |
| 8. | By using two kinds of affine representations of lie color algebras and the first cohomology group , we obtain some necessary or sufficient conditions to the problem whether there is any left color sysmmetric structure on a given lie color algebra which generalize the result of [ 2 ] 利用着色李超代数的两种仿射表示和1 -上同调群,得出左着色对称结构存在的几个充分或必要条件,推广了文[ 2 ]的结论。 |
| 9. | E for an algebra of minimal representation - infinite type with preprojective component , it is simply connected if and only if the vanishing of 1 hochschild cohomology group ; the same conclusion is true for a general algebra with minimal representation - infinite type . in chapter 3 , we computed the fundamental group for hereditary algebra and other special cases , and studied the fundamental group under one point extension 在第二章中我们得到了极小无限表示型代数单连通性的一些结论:对于具有预投射分支的极小无限表示型代数,它是单连通当且仅当其一次hochschild上同调群为零;而对于一般情形的极小无限表示型代数,也是如此。第三章中,我们对基本群在遗传代数等几种特殊情况下,对于一些例子作了计算。 |