| 1. | Bifurcation of homoclinicorbits in fast variable space 快变量空间中的同宿轨道分支 |
| 2. | Homoclinic orbits of the davey - stewartson equations 方程的同宿轨道 |
| 3. | An analytical expression of homoclinic orbit or heteroclinic orbit is worked out 得出了同宿轨道或异宿轨道的解析表达式。 |
| 4. | Positive homoclinic orbits for a class of asymptotically periodic second order differential equations 一类二阶渐近周期微分方程的正同宿轨道 |
| 5. | When we study the homoclinic orbits of the cqs equation , the quintic term is a perturbation 在讨论cqs方程的同宿轨道时,五次非线性项被作为nls方程的扰动项。 |
| 6. | By using melnikov method , the melnikov function of homoclinic orbit or heteroclinic orbit is calculated and established 应用melnikov方法,计算并建立了同宿轨道或异宿轨道的melnikov函数。 |
| 7. | In chapter 2 , we discuss the existence of homoclinic orbits for a perturbed cubic - quintic nonlinear schrodinger ( cqs ) equation with even periodic boundary conditions 第二章研究三次?五次非线性schr ( ? ) dinger ( cqs )方程同宿轨道的不变性。 |
| 8. | Within the homoclinic orbit or heteroclinic orbit , the analytical expression of one set of periodical track surrounding the center - type singular point is worked out 得到了同宿轨道或异宿轨道内的,围绕中心型奇点的一族周期轨道的解析表达式。 |
| 9. | More specifically , we combine geometric singular perturbation theory with melnikov analysis and integrable theory to prove the persistence of homoclinic orbits ) dinger方程同宿轨道的存在性,其基本思想方法是基于整体可积理论、 melnikov方法和奇异扰动理论的综合运用 |
| 10. | We adopt a three mode fourier truncation and get a six dimensional model . this model is considered and the persistence of the homoclinic orbits is obtained by melnikov ' s analysis together with the geometrical singular perturbation theory ) dinger ( dnls )方程,通过采用三模fourier截断,我们得到一个六维模型,利用melnikov分析和几何奇异扰动理论证明了这个六维模型同宿轨道的保持性。 |