| 1. | Tensor algebra is tied to coordinates . 张量代数则离不开坐标系。 |
| 2. | is the tensor of inertia. 是惯性张量。 |
| 3. | Quantities like stresses are called tensors of rank 2 . 类似于压力的量称为2阶的张量。 |
| 4. | One third of the tensor is often called the bulk stress . 张量的三分之一通常称为体应力。 |
| 5. | When this tensor vanishes, the space is calleda flat . 当这一张量为零时,空间叫做平直空间。 |
| 6. | For unsymmetric tensors no statement of this kind can be made . 对于非对称张量,这种论断不成立。 |
| 7. | The elastic moduli eijlm represents a tensor of the fourth order . 弹性模数Eijlm表示一个四阶张量。 |
| 8. | Tensors of this kind are called antimetric or skew-symmetric . 这类张量叫做反对称张量或斜对称张量。 |
| 9. | The fourth-rank tensors contain the compliance and stiffness constants . 四秩张量包含柔量常数和刚度常数。 |
| 10. | We derive the relations between physical and tensor components . 我们推导物理分量和张量分量之间的关系式。 |