| 1. | The subproblem is solved by simulated annealing algorithm 该子问题可通过模拟退火算法来解决。 |
| 2. | On solution of quadratic subproblem 关于二次子问题的解 |
| 3. | The convergence theorem of the proposed method is proved based on the exact solution of the subproblem 基于子问题的精确求解,该文证明了算法的收敛性。 |
| 4. | When the hessian is positive definite , the qp subproblem is a strict convex quadratic programming 若qp子问题的hessian阵正定,则它是一个严格凸二次规划问题。 |
| 5. | The process will often be self - repeating since each subproblem may still be complex enough to require further decomposition 由于每个子问题可能仍然十分复杂,需要进一步的分解,这个过程就将不断的循环往复 |
| 6. | The method incorporates a primal partitioning scheme - with a network flow subproblem - to obtain good feasible solutions 本文设计了一种模拟退火算法的实现形式,通过大量的算例分析表明,该算法具有良好的寻优特性与运算效率。 |
| 7. | Furthermore , the authors develop the proposed alternating direction method as an inexact method , which only needs to solve the subproblem inexactly 进一步,又提出了一类非精确交替方向法,每步迭代计算只需非精确求解子问题。 |
| 8. | The aim of this paper is to construct a three - term conjugate gradient method to solve the trust region subproblem 在本文中,我们提出了解信赖域子问题的三项预处理共轭梯度法,并将这个方法嵌入解大型最优化问题的信赖域算法中。 |
| 9. | In this new dividing strategy , the sum of the subproblem ' s scales is equal to the original problem ' s scale minus 1 . an eigenvalue interlacing theorem is given and proved 在这个划分策略中,子问题的规模之和等于原问题的规模减1 ,文中给出了特征值分割定理及其证明。 |
| 10. | Based on double dogleg path , the iterative direction is always obtained in the intersection of double dogleg path and bound of trust region by solving the affine scaling trust region subproblem 一般地,基于双折线路径方法可以在双折线路径和信赖域边界相交点得到迭代步。 |