| 1. | Firstly , this paper introduces the new concepts of locally conditional upper semilattice ( in short , l - cusl ) and its ideal completion 本文首先引入局部条件并半格(简记为l - cusl )及其理想完备化等概念。 |
| 2. | Aim in order to prove a semiring whose additive reduct is a semilattice and multiplicative reduct is a inverse semigroup to be a distributive lattice 摘要目的求证加法导出是半格、乘法导出是逆半群的半环成为分配格的充要条件。 |
| 3. | Besides the study of general semigroup , the strong semilattice of inverse semigroups , bands , and normal bands are discussed . the main results are given in follow 除了对一般半群的研究,本文还对逆半群、带、正规带的强半格作了相关问题的讨论。 |
| 4. | Consequently , the class pc of the p lus cupping computably enumerable degrees is not an ideal of ? the upper semilattice of the computably enumerable degrees 因此所有加杯可计算枚举度组成的集合pc不是的理想,这里是所有可计算枚举度构成的上半格。 |
| 5. | Theorem 1 . 3 . 3 5 is an a - idempotent semiring , then 5 is a normal idem - potent semiring , if and only if s is a strong semilattice idempotent semiring of rectangular idempotent semirings 定理j设s是人一幂等半环,则s是正规幂等半环,当且仅当s是矩形幂等半环的强半格幂等半环 |
| 6. | Furthermore , in the second chapter semidirect product of 5 and te is discussed . we have the result that it is also clifford quasi - regular semigroup . besides semidirect product of s and te is semilattice of quasi - groups 进一步,论文又在第h章中讨论了半群s和t的子半群te的半直积及其结构,得出了s和t ”的半直积也是clvj 。 |
| 7. | Finally , we show that is a semilattice of groups congru - ence if and only if ( na ) u is a seminormal subsemigroup on 5 , where pna is a group congruence on the semilattice congruence class sa of 5 在这一章的最后文章绪出了半群s上的半格同燃so上的群同余pno的并i ’ upe成为s上的群的半格同余的充分必要条件为u ( na切oeyoey是s的半正规子半群 |
| 8. | In the second chapter , we give the description of the least group congruence on a - regular semigroup s . in the third chapter , we describe the group congruences on a semigroup s and construct the semilattice of groups congruence on it 本文的第三章对一般半群上的群同余作了描述,并且对其群的半格同余进行了构造。在对群同余的描述中,事实上是把d |
| 9. | In this dissertation , we characterize the congruences on a strong semilattice of semigroups by the congruences on those semigroups and prove that a sublattice of the direct product of the lattices of congruences on those semigroups is isomorphic to a sublattice of the lattice of congruences on the strong semilattice of semigroups 本文,我们主要利用一族半群上的同余刻划其强半格上的同余,并讨论这族半群的同余格的直积的子格与其强半格上的同余子格的关系。 |