| 1. | It was this concept that riemann generalized, thereby opening up new vistas in non-euclidean geometry . 这个概念嗣后为Riemann所推广,从而在非欧几里德几何学中开辟了新前景。 |
| 2. | Christoffel's major concern was to reconsider and amplify the theme already treated somewhat sketchily by riemann . Christoffel主要关心的是重新考虑和详细论述Riemann已经稍为粗略地讨论过的题目。 |
| 3. | Gauss assigned to riemann the subject of the foundations of geometry as the one on which he should deliver his qualifying lecture . Gauss给Riemann指定把几何基础作为他应该发表的就职演说的题目。 |
| 4. | Relation of directly - riemann , lebesgue and riemann intergration 积分的相互关系 |
| 5. | On some important inequalities of directly - riemann integrate 积分的一类重要不等式 |
| 6. | Note on the limit theorem of directly riemann integral 积分极限定理又一注记 |
| 7. | On generalized non - ordinary riemann integrals 关于广义非正常黎曼积分的注记 |
| 8. | The further properties on directly - riemann integral 积分的一个重要不等式 |
| 9. | The important inequality for directly - riemann integral 积分的进一步属性 |
| 10. | A note of double periodic reriodic riemann boundary problem solution 边值问题解法的一个注记 |