| 1. | On the other hand , one can also study the finite groups whose normalizers of sylow subgroups have some given external properties 另一方面,人们也可以讨论西洛子群的正规化子有某种外部性质的有限群。 |
| 2. | Haiyan lanfon normalizer co . , ltd is located in the fastener district of china , haiyan zhejiang province 海盐联丰标准件厂位于中国紧固件之乡?浙江海盐,距上海98公里,杭州80公里,地理优势明显,交通便捷。 |
| 3. | Let be a class of groups . then , we denote by n the class of groups whose normalizers of all sylow subgroups are in 我们令x表示一个群类,我们把西洛子群的正规化子包含在x中的群构成的群类用n ~ x来表示。 |
| 4. | It is well known that the normalizers of sylow subgroups of a finite group play a crucial role in the investigation of finite groups 众所周知,有限群的西洛子群的正规化子在对有限群g的研究中起着极其重要的作用。 |
| 5. | We note that in all the above papers , the groups are finite groups whose normalizers of sylow subgroups have some given internal properties 我们注意到在上述的所有文献中,都是对西洛子群的扬州大学硕士学位论文生正规化子的内部性质进行讨论的有限群。 |
| 6. | Theorem 2 . 4 let g be a non - abelian inner - finite group , each non - trivial proper subgroup of g is prime order cyclic group if and only if g is a simple group ; each proper subgroup of g is nilpotent ; and each non - trivial subgroup of g is self - normalizer 4设g是非阿贝尔的内有限群,则g的每个非平凡真子群都是素数阶循环群的充分必要条件是g是单群, g的每个真子群幂零且g的每个非平凡的真子群自正规化定理2 |
| 7. | In 1996 , guo [ 9 ] has further proved that the index of the normalizer of every sylow subgroup of g is an odd number or a prime if and only if g is a soluble group and g = kh , where k and h are the hall subgroups of g , k is a nilptent subgroup which is normal in a 2 ' - nilpotent . in this paper , we shall study the nilpotent length of finite groups whose sylow normalizer indices are of prime powers 1996年,郭文彬教授沙1证明了一个群g的西洛子群的正规化子的指数为奇数或为一个素数幂当巨仅当g为可解群而且g二尤厅,其中k和h都是群g的hall一子群, k是正规于g的一个2 ’一月恤21子群的幂零子群, h是2一幂零群。 |
| 8. | In this aspect , kondrat ' ev [ ll ] has shown that a group g is 2 - nilpotent if the normalizer of each sylow subgroup of g is of odd index in g . in 1995 , zhang [ 13jhas proved that a group g is soluble if the index of the normalizer of every sylow subgroup in g is a prime power 1988年, kondrat ’ ev卜11证明了:如果群g的任意西洛子群的正规化子在g中的指数为奇数,则g是2一幂零的。 1995年, zhang卜习证明了如果群g的任意西洛子群的正规化子有素数幂指数,则g是可解的。 |