| 1. | Homological algebra plays such an important part in modern developments . 同调代数在现代发展中起了如此重要的作用。 |
| 2. | On the homological properties of nakayama algebras 代数的一些同调性质的探讨 |
| 3. | The homological quadratic form in coalgebras 余代数上的同调二次型 |
| 4. | On the homological properties of 代数的一些同调性质的探讨 |
| 5. | In this thesis , we mainly investigated gpp - ring and several special modules and their homological dimensions 本学位论文主要讨论gpp -环和几类特殊模及其同调维数。 |
| 6. | Given a ring or module , one can define various homological dimensions by resolving the modules 给定一个环或模,人们通过环和模的多种不同分解式,可以定义不同的同调维数。 |
| 7. | Chapter 1 is introduction . we introduce the importance of homological theory in algebras , and the close relations with other algebraic branchs 第一章为引言,主要介绍了同调理论在整个代数学中的重要位置以及与其它代数分支的密切联系。 |
| 8. | In this paper , we investigate the homological dimensions of some special modules . we improve 6 , theorem and 7 , theorem 2 , 3 . as corollaries , we obtain the main results of 4 , 2 and 5 考察了一些特殊模的同调维数,并得到相应的结果,从而一些已知的结论可作为我们的推论 |
| 9. | Injective modules play an important role in module theory and homological algebra . in the first part of this paper , the concept of injective modules extended and weak injective modules are denned 在本文的第一部分中,我们对内射模的定义进行了推广,定义了弱内射模:设t , n为r -模,对于n的任意非零子模m ( |
| 10. | Given a ring , one always takes the supremum of some homological dimension of specified modules to obtain the corresponding global dimension , and to characterize the ring from outside 对于给定的结合环,人们往往通过对其上的一些模的某一种同调维数取上确界而得到环的相应的整体维数,进而从外部刻画出环的特征。 |