| 1. | We always reject zero as an eigenfunction on the ground of physics . 根据物理上的理由,我们总是剔除把零作为本征函数。 |
| 2. | The parity of the eigenfunction is found by determining what happens to the wave function when r is replaced by -r . 本征函数的宇称可以这样确定:当r用r代替时看波函数的变化。 |
| 3. | ( 2 ) morphology of stationary state eigenfunction 定态波函数形态特征。 |
| 4. | Generalized eigenfunction expansion concerning normal operators 与正常算子相关的广义特征函数展开 |
| 5. | The eigenvalue and eigenfunction of a coupled quantum oscillator 二维耦合量子谐振子的本征值和本征函数 |
| 6. | The solutions of eigenvalue and eigenfunction for three non - self - adjont situation are summrized 对三种非自共轭情形下的本征值和本征函数的求解方法进行了归纳总结。 |
| 7. | Comparison of modal function expansion method with eigenfunction expansion method for prediction of hydroelastic responses of vlfs 预报超大型浮体水弹性响应的模态函数展开方法和特征函数展开方法比较 |
| 8. | In chapter 8 solutions by eigenfunction expansion to 1 - dimensional problems of mechanics and 2 - dimensional problems of theory of elasticity are researched 第八章研究1维力学和2维弹性力学问题的特征函数展开解法。 |
| 9. | < uk > since we get continuous rather than discrete allowed values for e 0 , the positive - energy eigenfunctions are called continuum eigenfunction . < / uk > < uk >由于对e 0得到连续的而非分立的允许值,正能量的本征函数叫做连续谱本征函数。 < / uk > |
| 10. | In 1990s based on the eigenfunction method of representation theory of groups , a new method , the symmetrized boson representation ( sbr ) method , was brought forward 90年代,陈金全等人在点群的表示理论上提出了一种新的方法,对称化玻色表象方法( sbr ) 。 |