| 1. | A sum analogous to dedekind sums and its 4 - th man value formula 和的四次均值公式 |
| 2. | On the mean value formula of dedekind sums 和的均值公式 |
| 3. | A characteristic of dedekind groups 群的一个刻画 |
| 4. | Weighted square integral mean value in an error term of generalized dedekind function 函数误差项的加权平方积分均值 |
| 5. | Mean value estimates of an error term related to the reciprocal of the dedekind totient function 倒数有关的误差项的均值估计 |
| 6. | In chapter 1 , 2 and 3 we will study some properties of a sum analogous to general dedekind sum 在第一、二、三章中我们将研究一个类似于广义dedekind和的和的一些性质。 |
| 7. | In chapter 4 we will study the distribution properties of the hybrid mean value involving three sums analogous to dedekind sums and ramanujan sum 在第四章中我们将研究类似于dedekind和的和与ramanujan和的混合均值的分布性质 |
| 8. | Professor todd cochrane introduced a sum analogous to the dedekind sum , where a is defined by the equation aa = 1 mod k , denotes the summation over all a such that ( a , fc ) = 1 关于s ( h , k )及s ( h , n , k )的性质,许多学者作了广泛的研究。美国解析数论专家toddcochrane介绍了一个与dedekind和相似的和如下:这里表示对所有的与k互素的求和。 |
| 9. | Then the order bound norm imposed on the order bounded operators between two banach lattices is fully studied . the results include the relationships between the order bound norm and the other two types of norms of a regular operator ; respectively , and a condition under which the space of order bounded operators is a dedekind complete banach lattice 接着讨论了banach格间序有界算子的序有界范数,详细论证了正则算子的(一致)算子范数、正则范数和序有界范数三者之间的关系,并得到了序有界算子空间在序有界范数之下是dedekind完备banach格的一个条件。 |
| 10. | Theorem 2 . 5 let g be an infinite simple group that satisfies maximal condition . g is an inner - finite group and each non - trivial proper subgroup of g is abelian if and only if for each x in g , cg ( x ) is the only maximal subgroup that contain x . s * ( a * , c * ) - groups can be regarded as a generalizations of dedekind groups , since all of dedekind groups are s * ( a * , c * ) - groups 5设g是满足极大条件的无限单群,则g是内有限群,而且g的每个非平凡真子群是阿贝尔群的充分必要条件是对g的任意非平凡元x ,有c _ g ( x )是g的含x的唯一极大子群且c _ g ( x )是有限的。 |