| 1. | A few ways to the summation of infinite series 关于无穷级数求和的几种方法 |
| 2. | Discussion on methods to do the summation infinite progression 导数在无穷级数求和方法中的应用 |
| 3. | Techniques of summation on sevies 数项级数求和方法与技巧 |
| 4. | Summation to calculate a class infinite series by using residue theorem 应用留数定理计算一类级数求和问题 |
| 5. | Application of complex function series in summation of triangular progression 复变函数级数在三角级数求和中的应用 |
| 6. | A sum theorem of series 级数求和的一个定理 |
| 7. | Differential method application in solving summation of special constant series 微分法在一类特殊常数项级数求和中的应用 |
| 8. | From three respects in calculus teaching , this paper has mainly discussed magical effect of physics meaning of questions , which is curve integration curved surface integration and sum of series formula 摘要微积分的教学离不开问题的物理意义,文章从曲线积分、曲面积分以及级数求和公式的推导等三个方面来说明问题的物理意义在微积分教学中的妙用。 |
| 9. | For some non - symmetric homogeneous domains , we can also get the explicit formulas of their bergman kernel functions by hua method [ xu4 ] [ gi ] . we know the complete orthonormal system of the bounded reinhardt domain made up of monomials , and complex ellipsoid domain is the bounded reinhardt domain , so the explicit formulas of the bergman kernel functions are obtained by summing an infinite series in some cases ( called method of summing series ) 对于一些非对称的齐性域,也可以用华罗庚方法得到它们的bergman核函数的显表达式我们知道,有界reinhardt域的完备标准正交系由单项式组成,而复椭球域是包含原点且以原点为中心的有界reinhardt域,于是可以通过无穷级数求和函数的方法,计算其bergman核函数的显表达式,这种求bergman核函数的显表达式的方法称为级数法。 |