| 1. | One of the most important, most difficult, and most exasperating unsolved problems of operator theory is the problem of invariant subspaces . 算子理论中最重要、最困难也最令人烦恼的未解决问题之一就是不变子空间问题。 |
| 2. | The cheapest way to get one is to invoke the spectral theorem and to conclude that normal operators always have non-trivial invariant subspaces . 取得这样结果的最省力的尝试是引用光谱定理而得到正规算子恒有非平凡不变子空间的结论。 |
| 3. | Perturbation of eigenvalues associated with inviariant subspaces 不变子空间上特征值的扰动 |
| 4. | Compact perturbations of hyperinvariant subspace 超不变子空间的紧摄动 |
| 5. | Some properties of rough invariant subgroups and rough quotient groups 粗糙不变子群的若干性质与粗糙商群 |
| 6. | In the third chapter , the perturbation of invariant subspace , singular subspaces and deflating subspaces are discussed 第三章讨论了不变子空间、奇异子空间对和收缩子空间对的扰动。 |
| 7. | Settle the problem of nonlinear solution - resolved and avoid the problem of complex variational wavelet 避免了对先验模型要求的假设前提,解决了反演的非线性求解问题,同时也避免了复杂的变子波问题。 |
| 8. | In this paper , we discuss a new class of m - paranormal operators and give the properties of these operators . further , we also give an existence condition of the invariant subspace 讨论了一个新的算子类: m -仿正规算子.给出了这一类算子的部分性质及不变子空间存在的条件 |
| 9. | This paper mainly researches the relationship among the solution coset of linear equations form the angle of the coset of invariant subgroup , in the course of which the base and the dimension of quotient space have been found out 摘要从不变子群的陪集的角度研究线性方程组的解陪集之间的关系,并找到了商空间的基与维数。 |
| 10. | Then , the advanced algorithms of doa estimation on this paper are the multiple signal classification ( music ) method , esprition of signal paramenters via rotational invariance techniques ( esprit ) algorithm and estimation of spatial two - dimension doa 然后重点研究doa估计算法中的多重信号分类( music )算法,旋转不变子空间( esprit )算法和二维doa估计算法。 |