| 1. | For any approximation to be valid it must provide a result that is in some sense close to the solution of the original problem . 任何有效的近似式必须在某种意义上提供一个接近于原问题解的结果。 |
| 2. | Existence conditions for second order neumann boundary value problems 边值问题解的存在性 |
| 3. | Research on a solution of elliptic boundar 利用增生算子理论研究一类椭圆边值问题解的存在性 |
| 4. | An existence result for the generaliaed vector equilibrium problem 广义向量平衡问题解的存在定理 |
| 5. | Existence of solutions for a class of non - local evolution problems 一类非局部发展问题解的存在性 |
| 6. | Existence of solutions for nonlinear singular boundary value problems 非线性奇异边值问题解的存在性 |
| 7. | Asymptotic behavior of solutions for the generalized bbm - burgers equation 方程初边值问题解的渐近行为 |
| 8. | Asymptotic estimation for solutions to a class of strongly nonlinear robin problems 问题解的渐近估计 |
| 9. | Generalized equilibrium problems and generalized vector equilibrium problems 广义向量平衡问题解的存在性 |
| 10. | Existence and decay behavior of solutions for a parabolic problem 抛物型方程一类初值问题解的存在性和衰减 |