| 1. | Study of voltage stability region of power systems subject to serious load disturbance 功率大扰动下电压稳定域的研究 |
| 2. | Analysis of bifurcation and stable region for water turbine generator shaft torsional vibrations 大型水轮发电机组轴系扭振的分岔和稳定域分析 |
| 3. | A numerical method on estimation of stable regions of rotor systems supported on lubricated bearings 滑动轴承转子系统动力学稳定域的数值分析方法 |
| 4. | Some conditions are obtained by using the semigroup theory , the properties of nonnegative matrices and the techniques of inequalities to determine the asymptotically stable region of the equilibrium 通过半群理论、非负矩阵性质和不等式技巧,得到估计这类方程平衡态渐近稳定域的方法。 |
| 5. | The results show that the water - level controlling system has wide stable domain and stable condition is easy satisfied and the domain is larger when the forebay time constant tq is bigger 分析表明,水位调节模式下调节系统的稳定条件容易满足,稳定域很大,前池时间常数t _ q大的更有利于调节系统稳定。 |
| 6. | Using lyapunov functional and linear matrix inequality ( lmi ) technique , and through the stability of subsystems decoupled in a single direction , we obtain an estimation formula of parameter ' s stability domain 再利用标量lyapnov泛函和线性矩阵不等式技术,由单向解耦子系统的稳定性得到线性时滞大系统和非线性大系统参数稳定域的估计公式。 |
| 7. | Based on modeling and analyzing the discrete mathematic model of hydraulic turbine governor system , the edge equation of stable domain of the discrete control system is obtained . according to this equation , the stable domain is specified . compared with continuous system , the changing rules and characters of the discrete system are found , which provide the theoretic foundation for researching the control strategy and the parameter adjustment of discrete control system of the hydraulic turbine governor 在建立水轮机调节系统离散数学模型的基础上,通过分析,给出离散调节系统的稳定域边界控制方程,通过稳定域绘制,比较离散与连续系统的差异,找出离散调节系统稳定域的变化规律和特点,从而为研究水轮机离散调节系统的控制策略及调节参数整定提供理论依据。 |
| 8. | In this paper , we study the application of qualitatively , stability and bifurcation theories of dynamics systems in power systems . we discover that parameters play an important role in stability and feasibility region of the power systems . the results provide methods to decide stability and domain of parameters 本文以动力系统理论中的定性、稳定性和分支理论为基础,研究了它们在电力系统中的应用,发现系统参数对系统的稳定性及稳定域起到重要作用,这为控制电力系统的稳定性提供了研究方法和参数范围。 |
| 9. | The geometric explanation of the image principle presented in “ a new method to determine the transient stability boundary using nonlinear theory 1 is given . a theorem to determine the critical clearance time is derived . from the calculation results of two examples , the correctness of the theories put forward by this paper and paper 1 is verified 对论文《运用非线性系统理论确定电力系统暂态稳定域的一种新方法》 1中所提出的映射机理作了几何解释;提出了确定电力系统临界切除时间的定理;通过对一简单电力系统和电科院6机22节点算例的计算,验证了本文及文1所提出的理论的正确性。 |
| 10. | These research also approve some inherent phenomena in nonlinear systems such as the interleaving of stability region and instability region , the parameter sensibility of the instable modes , divergence after a relatively long time of chaotic swings ( transient chaos ) , a cascade of period double bifurcations to chaos and etc . these phenomena are of great importance to both theoretical research and engineering practice 研究还证实了一些非线性系统所特有的现象,如稳定域和不稳定域的相互交错现象,失稳模式对参数的敏感性,一段时间混沌振荡后的无界现象(称为预无界混池) ,由周期运动经一连串倍周期分岔直至混浊等。这些现象对理论研究与工程实践都具有重要意义。 |