| 1. | The good module category of monomial quasi - hereditary algebra 拟遗传代数的好模范畴 |
| 2. | Product and coproduct of group category and module category 群与模范畴中的积和余积 |
| 3. | The graded cyclic homology of a category of graded modules 分次模范畴上的分次循环同调 |
| 4. | Partial tilting module and module categories without short cycles 部分倾斜模和无短循环的模范畴 |
| 5. | Twist of the category of right - doi - hopf modules 模范畴上的扭曲 |
| 6. | The properties of category of fuzzy modules over intserval - valued fuzzzy rings 区间值模糊环上的模糊模范畴的性质 |
| 7. | In 1993 , w . crawley - boevey introduced the conception of exceptional sequence to the representation theory of path algebra . he has shown that the braid group acts transitively on the set of complete exceptional sequence 1993年, w . crawley - boevey将例外序列的概念引入路代数的表示理论中,并证明了辫子群对路代数的模范畴中的完备例外序列的作用是可迁的。 |
| 8. | In the first section , we introduce some knowledge we need in this article . they are the definitions of quasitriangular hopf algebra . triangular hopf algebra . the theorem of the property of their modules category , and the property of r . in the second section 第一部分中,介绍了本文所需要的预备知识,主要是拟三角、三角hopf代数的定义,他们的模范畴的性质定理,以及r的性质。 |
| 9. | The main content of this paper is the cohomologies and extensions over triangular hopf algebra . according to [ l ] , we consider the cohomologies and extensions and then the relationships between them in the category of the modules of triangular hopf algebra h . and the category is a symmetry monoidal category 论文主要考虑的内容是上同调与扩张,根据文献[ 1 ] ,具体的考虑作为对称的monoidal范畴的三角hopf代数h的模范畴的上同调与扩张及它们之间的关系。 |
| 10. | Hereditary torsion theories have been developed since the 1960 ' s and have been extensively studied by golan , gabriel , dickson , stenstrom , etc . in this thesis , combining hereditary torsion theories with morita contexts , we discuss the changes of some properties about hereditary torsion theories by the morita context functors and the covers and envelopes by a special category 本文主要将遗传挠理论同moritacontexts结合,讨论在moritacontext函子作用下关于遗传挠理论的一些基本性质的转移及变化,并通过一类特殊的模范畴对包与盖进行探讨 |