| 1. | Dimensionless quantities in physics are those that require no unit . 物理学中无量纲的量就是不需要单位的量。 |
| 2. | It is convenient to nondimensionalize this problem with the following substitutions . 利用下面的代换,便于使这个问题无量纲化。 |
| 3. | It is not satisfactory from a dimensional standpoint, since the power to which we raise e must be dimensionless . 从量纲的观点来看,它是不能令人满意的,因为e的幂必须是无量纲的。 |
| 4. | A dimensionless physics is not so profound as it may sound, nor would it necessarily be a terminus of man's downward probing . 无量纲物理学不像听起来那么深奥,也未必是人们向深处探索的终点。 |
| 5. | Dimensionless numbers may result either from counting or from taking the ratio of two quantities expressed in the same unit of measurement . 无量纲的数,或者由计数而得,或者由求两个采用同一计量单位的量之比率而得。 |
| 6. | Improved scaling rules for guided modes in nonlinear film waveguides 改进的非线性薄膜波导导模的无量纲表示 |
| 7. | " appropriate " scaling - what are the relevant nondimensional parameters “适当”缩放什么是相关的无量纲参数? |
| 8. | Scaling rules for slab waveguides with power law nonlinear cladding 幂次率非线性包层平板波导传播特性的无量纲表示 |
| 9. | The third dimensionless parameter in the penetration dynamics of rigid projectiles 刚性弹侵彻动力学中的第三无量纲数 |
| 10. | What good are dimensions then , if we really measure dimensionless numbers 既然我们测量的是无量纲的数字,那量纲有什么用呢? |