| 1. | The model which has such kind of property is referred to as heteroscedastic regression model 扰动项具有异方差性的模型称为异方差模型。 |
| 2. | When we study the homoclinic orbits of the cqs equation , the quintic term is a perturbation 在讨论cqs方程的同宿轨道时,五次非线性项被作为nls方程的扰动项。 |
| 3. | One of the important hypotheses of classical linear regression model is that the random disturbances have equal variance 经典线性回归模型的一个重要假设就是回归方程的随机扰动项u _ i ,具有相同的方差,也称同方差性。 |
| 4. | The function has these characters : it ' s singular at 0 , and it has a critical exponent term for p = 2 * - 1 and an inhomogeneous perturbation 此方程的特点是在原点有奇性,当p = 2 ~ * - 1时含有临界指标项,以及边界带非齐次扰动项。 |
| 5. | Numerical experiment shows that this heterogeneous disturbance arising from soil water content ' s spatial variability cannot be neglected when regional mean evaporation fluxis estimated 数值试验表明,这种因空间变率而引发的非均匀扰动项在估计区域平均通量时具有不可忽视的影响。 |
| 6. | However in most economic phenomena , this kind of hypothesis is not necessary true . sometimes the disturbances vary with the observations . this is called heteroscedasticity 但在大多数经济现象中,这种假设不一定成立,有时扰动项u _ i的方差随观察值的不同而变化,这就是异方差性。 |
| 7. | For the regression estimation when the auxiliary variate is correlated with the disturbance , the bias and mean square error ( mse ) of the regression estimator are obtained , and the estimator of the mse is presented 摘要讨论了辅助变量与扰动项相关条件下的回归估计,给出了在这种条件下回归估计量的偏差和均方误差以及均方误差的估计。 |
| 8. | Since we use different time - scales in the calculation , the solution we get is more precise . it is worth pointing out that this method also can be used in other nls equations with any perturbed terms 由于在计算的过程中采用了不同的时间尺度,所得的近似解具有较好的精确性,值得指出的是该方法也同样适用于扰动项为一般形式的情况。 |
| 9. | In chapter 2 , we study the existence of the global attractor the complex ginzburg - landau equation in three dimensions space . first , we consider existence of local solu - tion . for a given perturbation n ( u ) , we prove n ( u ) is contractive and locally lipschitz continuous 在第二章,考虑ginzburg - landau方程在三维空间的整体吸引子的存在性,首先考虑ginzburg - landau方程的局部解的存在性,对于一给定的扰动项n ( u ) ,证明n ( u )是收缩的且是局部lipschitz连续的。 |
| 10. | And beginning with a perturbed nls equation , using a multi - scales perturbation expansion , we get the zero order and the first order equations , discuss the eigenstates of the operator in the equations , induct relevant " derivative states " , form the completeness of the bounded eigenstates of the associated operator in li space , and expand the corresponding parameters in the closure , get a series evolution equations of the coefficients in the expanded formulas , find the first order approximate solution by researching the evolution equations . this paper also gives the basis of this method - the completeness we have formed and the singular perturbation technique ) dinser方程的求解问题,讨论了自伴算子的本征函数的正交性和完备性,介绍了寻求微分方程的近似解常用的摄动方法,并从带有某种扰动项的nls方程出发,利用多重尺度的摄动方法得到了方程的零级近似方程和一级近似方程,通过对近似方程中算子的特征态的讨论,引入适当的“导出态” ,建立了算子在l _ 2空间的特征态的完备性。 |