A class of random walks on half - line in random environments 一类随机环境中半直线上的可逗留随机游动
2.
Generalized legendre rational pseudospectral method on the half line 半直线上的广义勒让德有理拟谱方法
3.
Recurrence of random walks on half - line in independent random environment 半直线上随机环境中可逗留随机游动的常返性
4.
Recurrence of random walks in an independent environment on a half - line 半直线上独立随机环境中可逗留的随机游动的常返性
5.
The recurrence of random walks in an independent random environment on half - line 半直线上独立随机环境中的随机游动的常返性
6.
Recurrence of random walks with resting state in random environment on half - line 半直线上随机环境中的可逗留随机游动的常返性
7.
The present paper firstly represents the model about random walks in time - random environments on the right line , then the studies about recurrence - transience criteria and limit theorem by using some relative theories of markov chains , and finally a center limit theorem of this random walks in the non - recurrence case 摘要给出了半直线上时间随机环境下随机游动的模型,并利用马氏链理论研究了该随机游动的常返暂留准则和依概率收敛的大数定律,得到在非常返情形下的中心极限定理。
8.
The growth for the more general random taylor series fw ( z ) in the unit curcle , whose growth order is almost surely ( a . s . ) of order in any radius is proved . furthermore , tinder a better condition of coefficient , for general enough and non - equally distributed random dirichlet series f ( s , w ) , we obtain these theorems as follows : its growth order in complex plane is almost surely ( a . s . ) 对更一般的非同分布的随机变量序列及在更广泛的系数条件下,证明了单位圆内的随机taylor级数f _ ( z )沿任一半径的增长级几乎必然( a . s . )为;证明了复平面上的随机dirichlet级数沿任一水平直线的增长级几乎必然为( a . s . ) ;证明了右半平面上随机dirichlet级数f ( s , )沿任一水平半直线的增长级几乎必然( a . s . )为,并且几乎必然以= 0上的每一点为其picard点等一些定理。
9.
Furthermore , to show the feasibility of our new approach , we briefly discuss the quantization of o ( n ) nonlinear sigma model , classical nonlinear sigma model and gross - neveu model which are constrained on a half line or supplemented by integrable boundary terms in chapter four 第四章是为了进一步说明我们这一新方法的可行性,又分别对限制于半直线上或附加了可积边界项的o ( n )非线性模型、经典非线性模型和gross - neveu模型的自洽的poisson结构及量子化进行了简单讨论。