| 1. | An expression on likelihood function of normal distribution ma sequence 序列的似然函数的一种表示 |
| 2. | Dually we can also obtain the relationship among plausibility function , outer measure and upper probability 似然函数与外测度及上概率之间的关系可对偶得到。 |
| 3. | We construct cost function which combines the likelihood function and boundary constraint function 它利用似然函数和边界约束方程构造代价函数,来描述区域特征。 |
| 4. | So the likelihood function of the differential phase peaks can be formed as means to identify m - ary psk 于是可利用相位突变峰值的似然函数来识别信号为哪一种进制的psk信号。 |
| 5. | Computation the likelihood function requires using the correspondences between extracted and predicted features 为了计算该似然函数,需要利用提取特征矢量和预测特征矢量之间的对应关系。 |
| 6. | The model - based sar target classifier that uses feature accomplishes classification by computing the likelihood function between extracted and predicted features 利用特征基于模型的sar目标分类方法,通过计算提取特征矢量和预测特征矢量之间的似然函数达到目标分类的目的。 |
| 7. | By the help of matrix and difference equation , we give an expression of likelihood function of normal distribution ma ( 0 , 1 ) sequence , which has important application in mordem control theory 借助矩阵和差分方程,具体给出了在实际中具有重要应用的一类数学模型? ?正态ma ( 0 , 1 )序列的似然函数的一种显式表示,即具体表示成了模型参数的函数 |
| 8. | It follows from the general convergence theory that the em algorithm generally converge to a local maximum solution of the likelihood function and cannot be guaranteed to converge to a correct solution , i . e . , a consistent solution of the samples Em算法的一般收敛理论认为,算法只能收敛到似然函数的一个局部极大解,无法保证能够收敛到与样本的真实参数相一致的解上。 |
| 9. | An appropriate cost function is constructed which avoids the use of the logarithm likelihood function that is lack of robust to the noise correlation , moreover , our method have many advantages such as , low complexity , suitable for coherence signals , etc 构造适当的代价函数,避免了对数似然函数的使用,该方法对色噪声协方差矩阵特征值分散具有稳健性,同时具有较低的计算复杂度和适用于相关甚至相干源等优点。 |
| 10. | The effects are on the probabilistic assessment of both scattering regularity and sampling size of the test s - n data . p - s - n curves are characterized by the scale and location parameters related s - n relations for the maximum value model . the materials constants of in the scale relations are given by the average s - n relations and the locations 曲线用极大值分布的位置与尺度参量s - n关系曲线来表征,尺度参量s - n关系曲线可表示成均值与位置s - n曲线的函数;均值曲线的材料常数应用最小二乘法求出,位置曲线参数通过极大值分布的似然函数解出。 |