| 1. | Theorem g is called binomial theorem . 定理g称为二项式定理。 |
| 2. | There is a wealth of information in the binomial theorem that we have yet to exploit . 我们还要揭示二项式定理更为丰富的内涵。 |
| 3. | he expands the right side by using the binomial theorem, subtracts y=. 他用二项式定理展开右边,消去y |
| 4. | Evaluation of p is simplified if the square root terms are expanded by the binomial theorem . 如果按二项式定理展开来计算平方根,P的计算可以简化。 |
| 5. | He initiated his pupils into the mysteries of the binomial theorem 他给他的学生们讲授二项式定理的奥秘。 |
| 6. | Evaluation of p is simplified if the square root terms are expanded by the binomial theorem 如果按二项式定理展开来计算平方根, p的计算可以简化。 |
| 7. | It included karaji ' s binomial theorem and rules of the arithmetic polynomial operations and developed karaji ' s theory of polynomial 其中保存了凯拉吉的关于二项式定理的工作以及多项式的运算法则,并进一步发展了凯拉吉的多项式理论。 |
| 8. | Many similar properties and identities , which are valid for integral bernstein bases , are got . moreover , marsden identity and its blossoming form for fractional bernstein bases are given and the example shows that fractional bernstein bases are more flexible than integral bernstein bases . in the third chapter , we introduce the definitions and properties of rb curves and poisson curves 在第二章中,利用指数为分数的二项式定理,将整数次bernstein基推广到分数次,发展了分数次bernstein基,得到了与整数次bernstein基许多类似的性质及恒等式,而这些性质及恒等式对于整数次bernstein仍成立,并且给出了关于分数次bernstein基的marsden恒等式及其blossoming形式,实例表明,负分数次bernstein基比负整数次bernstein基具有更大的灵活性。 |
| 9. | This paper mainly discusses rational blossoming in computer aided geometry design . specifically , we apply the fact that the binomial theorem is valid for negative integer and fractional exponents , introduce the rational bernstein bases and fractional bernstein bases , discuss the properties of rb curves and poisson curves , give the rational blossom and analytic blossom 本文主要讨论了cagd中的有理blossoming方法,具体来说,利用指数为负整数、分数的二项式定理,引入了负n次bernstein基函数、分数次bernstein基函数,讨论了rb曲线、 poisson曲线的性质,并且介绍了有理blossom与解析blossom |