Brahms symphony no . 3 in f major , op . 90 johannes wildner , conductor johannes moser , cello 勃拉姆斯f大调第三交响曲,作品90号
2.
Here , we take the moser iteration technique and study the two kinds of problems submitted above 在本文中,我们利用moser迭代的技术分别对两类问题进行了讨论。
3.
Consider lu = y ( uxx + uyy ) + aux + buy + cu , in c r2 + , where ; and set a0 = a ( x , 0 ) , b0 = b ( x , 0 ) 第四章使用moser引理和压缩映象原理,得到一类特殊的二阶半线性退化椭圆型方程边值问题解的存在性
4.
We embeded this g into the l - matrix of the elliptic gaudin and calogero - moser models to give the dynamics 将g嵌入到椭圆gaudin模型和椭圆calogero - moser模型的l -矩阵里,我们就给出了此n孤立于系统的动力学。
5.
Joy moser , spokeswoman for the kansas division of emergency management , said the agency had confirmed five deaths , and dozens of homes and buildings were damaged and destroyed around the region 堪萨斯紧急管理中心女发言人乔伊.莫泽说紧急中心已经确认5人死亡,她还说周围许多住宅和建筑物被龙卷风破坏。
6.
Second , the convergence theorem of newton method and newton - moser method is proved for solving the nonlinear equations with nondifferential terms under weak condition , the corresponding proof is also given , the convergence theorem of king - werner method is discussed for solving the nonlinear equations with nondifferential terms under the point estimates , the existence and convergence theorem of parallel - newton method is proved for solving the equations with nondifferential terms under the point estimates , the proof is given 第二,本文对牛顿迭代及newton - moser迭代,在弱条件下讨论了求解带不可微项的非线性方程的收敛情况并给出了收敛性证明;对king - werner迭代,讨论了在点估计条件下求解带不可微项的非线性方程的收敛性;对parallel - newton迭代,研究了其在点估计条件下求解带不可微项的非线性方程的收敛性,并给出了存在性收敛性证明。
7.
In chapter 3 , 1 consider the nonlinear parabolic equation : where a bounded domain with smooth boundary in ; v is outward normal vector on is a positive function satisfying some compatibility conditions focus my attention on the case of m > 1 , to obtain the blow - up conditions of the positive solution using the method of subsolution and supersolution 运用紧致性原理及moser迭代得到了解的整体存在性和解的熄灭性质。第三章讨论了如下形式的非线性抛物方程:其中m , , 0 , r ~ + ,为r ~ n ( n 1 )中的有界域,具有适当光滑的边界( ? ) ; v是(
8.
In the study of the lagrange stability of impact motion , we give some conditions of the bouncing solution of the asymptotically linear equation which is bounded or unbounded . outside of a large disc , using the symplectic transformation of the hamilton system to estimate the iteration of the successor map . applying the moser ' s small twist theorem , we get the invariant curves and then give the proof of the bouncing solutions which is bounded 在碰撞运动的lagrange稳定性的讨论中,给出了渐近线性方程碰撞解有界或无界的条件,在充分大的圆盘外,通过hamilton系统的辛坐标变换的角度平均来估计后继映射的迭代,应用moser小扭转定理得到不变曲线从而给出在一定条件下碰撞解有界的证明,碰撞解无界性的证明将采用直接估计后继映射的方法给出。
9.
In this paper , we choose a reasonable basic area and a coordinate transform and give conditions that ensure the invariant set or hyperbolic invariant set exist in the bouncing ball model by using the mosers and zhou jianying ' s conditions respectively . thus , the existence of horseshoe of the bouncing ball model is solved effectively 本文对碰撞恢复系数为0 1的弹跳球模型,通过选取合理的基本区域和引入适当的坐标变换,分别利用moser条件和周建莹提出的一组微分条件,给出了弹跳球模型存在双曲不变集和不变集的条件,从而很好地解决了该模型马蹄的存在性问题。