Especially , when the isocline of x is monotone decreasing in 0 < x < 1 , the svstem has no limit cycle and is globally stable ; next , we construct a saddle bifurcation at the boundary equilibrium and a degenerated bogdanov - takens bifurcation at the interior equilibrium by choosing appropriate parameter values in the following two sections , where our work are based on the theory of central manifolds and normal torms . we prove that is a codimention 3 focus - type equilibrium . system ( 6 . 1 ) will have two limit cycles at some appropriate bifurcation parameter values , and have homoclinic or double - homoclinic orbits at some other appropriate bifurcation parameter values ; at last , we study the qualitative properties of the system at infinite in the poincare sphere 因为系统在( 0 , 0 )点处没有定义,这给研究其在( 0 , 0 )附近的动力学性质带来了困难,我们应用文献[ 17 ]中关于研究非线性方程奇点的系列理论和方法,圆满解决了这一问题,给出了第一象限内当t +或t -时,在全参数状态下系统的轨线趋于( 0 , 0 )点的所有可能情况,其相图也得以描绘;并且,系统不存在极限环的几个充分条件我们也予以列出,当x的等倾线在0 x 1范围内递减时,系统不存在极限环,全局渐近稳定;然后,我们以中心流形定理和正规型方法为主要工具,巧妙选择参数,分别构造了一个余维2的鞍点分岔和一个余维3退化bogdanov - takens分岔,证明了平衡点是余维3的焦点型平衡点,存在参数, m ,的值使得系统( 6 . 1 )有两个极限环,还存在参数, m ,的另外值使得系统( 6 . 1 )有同宿轨或双同宿轨。