Now the technique developed by bianner , hubbard and yoccoz is called branner - hubbard - yoccoz puzzle theory 这种拼图技巧现在被称为branner - hubbard - yoccoz拼图理论。
2.
By an extension of branner - hubbard - yoccoz puzzle theory , a result analogous to branner and hubbard ' s in the cubic case is obtained A集是连通的当且仅当f的所有的临界卢、的轨道都是有界的。 ( 2f的j 。
3.
For the dynamics of polynomials with higher degree , for example , the quar - tic polynomials , the branner - hubbard - yoccoz puzzle theory should be extended 对于更高次多项式,譬如四次多项式,可能有多个临界点需要考虑,此时必须推广branner - hubbard - yoccoz理论。