动量积分 meaning in English
momentum integral
Examples
- Momentum integral equation of turbulent boundary layer on ogree section of spillway dam in considering the gravity and centrifugal force
考虑重力及离心力的溢流坝反弧段紊流边界层动量积分方程 - By the integral to boundary layer thickness and relative conditions , the momentum integral equation of boundary layer is obtained
通过对边界层厚度的积分并利用相关条件,得到了边界层动量积分方程。 - In the thesis the low drag - low noise optimization of the vehicle main form design is realized , main accomplishments are as follows . researched the knowledge of drag and flow noise , the parameters of the boundary layer are calculated by the hess - smith method and boundary layer momentum integral method . the calculation of the length of transition zone and change in boundary layer displacement thickness between laminar and turbulent states in the transition is improved , then the drag coefficient and self - noise from the transition zone are calculated as the objective functions of the optimization
主要研究内容和成果如下:对航行器绕流流场进行分析,深入研究了阻力和流噪声产生机理,建立了阻力系数和自噪声的评估数值计算模型;采用物面分布源汇法和边界层动量积分法对绕流流场的流体动力参数进行计算,改进了转捩区长度和边界层位移厚度的计算,应用于航行器头部驻点自噪声的计算;最后设计了阻力系数和自噪声数值计算程序模块。 - In chapter three , the momentum integral equations and their solutions of two - phase fluids in boundary layer are given and the no - disturbance solutions on the surface of vane are required . leading into the disturbance factor of no - dimension and thickness coefficient ks in boundary layer , the numerical method of finite approximation is used to calculate the boundary layer
第三章给出了固液两相流泵的边界层动量积分方程及其解的一般表达式,并得到叶片表面的无扰动解;引入了无量纲扰动因子及边界层厚度系数k _ ,给出了用于边界层计算的有限次逼近的计算方法。 - Firstly , based on n - s equation , the momentum differential equation ( contained centrifugal force ) is derived by simplification in boundary layer and then integrates the differential equation over the thickness of the boundary layer , the momentum integral equation is deduced . the dimensionless centrifugal factor is introduced , then the solution of the momentum integral equation is obtained . the dimensionless group is introduced to determined separation of boundary layer
本文首先根据粘性流体力学的一般方程,通过在边界层内进行量级比较,在所限定的范围内得到了含有离心力的边界层动量微分方程并给出其满足的边界条件,然后对该微分方程在边界层内积分得到离心泵叶轮边界层动量积分方程,在求解过程中引入了无量纲离心因子,并作了相应合理的假设,得出积分方程解的一般表达式,并引入以边界层动量损失厚度为主要特征量的无量纲参数对边界层分离进行评价。