非线性代数方程 meaning in Chinese
non-linear algebraic equation
Examples
- In the procedure , the column is first divided into a finite number of small segments in equal length . the deflection - curvature relation of each segment is determined using the finite - difference method . the final nonlinear algebraic equations are then obtained by means of the equilibrium condition for each segment
运用这种方法,先将长柱离散成若干等长的柱段,利用差分方法求得各柱段截面上的挠度与曲率的关系,再根据各截面上外力与抵抗力的平衡条件,得到一组关于荷载与变形关系的非线性代数方程组;本文对该方程组采用载荷增量法进行迭代求解。 - One of most effectively straightforward methods to construct travelling solitary wave solutions is tanh - function method . the algorithm is based on the fact that the solitary wave solutions are essentially of a localized nature . seeking solitary wave solutions which are in terms of hyperbolic tangent function gives a nonlinear system of algebraic equation
寻求非线性演化方程孤波解的双曲正切方法是直接代数方法中最为有效的方法之一,其基本原理是利用非线性演化方程孤波解的局部性特点,将孤波解表示为双曲正切函数的多项式,从而将非线性演化方程的求解问题转化为非线性代数方程组的求解问题。 - The two kind of harmonic balance methods , analytical hbm and dft numerical hba , are used for the analysis of the parametrically excited flexible cam - follower system with consideration of the clearance between cam and follower . through the two methods , the system equation is reduced to a series of nonlinear algebraic equations
这种非线性代数方程组需要依靠数值计算的迭代法才能求解,而由于问题的复杂性,普通的newton法很难求解,本文采用一种广泛应用的拟newton法一一broyden方法来求解,得出了出含间隙凸轮系统模型的稳态响应。 - The mostly conclusion of this part is as follows , on the conditon of travelling wave , the exact solitary wave solutions to some nonlinear wave equations such as sawada - kotera equation , kaup - kupershmidt equation , the fifth order kdv equation , fisher - kolmogorov equation , on the help of the computer algebraic system ( maple ) , are explicitly established by making use of the hyperbolic function method . this part is maken up of three sections
本部分的主要结论如下,利用双曲函数展开法,在行波条件下,对sawada - kotera方程, kaup - kupershmidt方程,五阶kdv方程, fisher - kolmogorov方程,等几类非线性波动方程求解,将其孤立波表示为双曲函数的多项式,从而将非线性波方程的求解问题转化为非线性代数方程组的求解问题,并借助于计算机代数系统求解非线性代数方程组,最终获得了这些非线性波动方程的若干精确孤立波解。 - Based on the saint - venant equations describing the channel flow movement , the nonlinear algebraic equations derived by the use of preissmann weighted implicit four - point scheme are solved with the netwon - raphson method , which raises the accurate of the numerical solution , and the convergence of the numerical solution is discussed , 2
用newton方法直接求解按preissmann加权四点格式离散扩展形式的saint - venant方程组所得的非线性代数方程组,提高了数值解的精确性,并对数值解的收敛性进行了讨论。