displacement function meaning in English
位移函数
Examples
- So we can use the networks to identify the function parameters when a box girder module is defined . the outputs of the networks are the coefficients of the bias function to displacement function , the bias function is used to adjust displacement function . the method avoids deflection of the other displacement function aroused
针对不同的箱梁几何特性、载荷形式、边界条件,网络有对应的位移函数调整系数多项式输出,从而构造了带调整系数的位移函数,避免了叠加原理修正的位移函数带来的计算偏差。 - In regard to the former , this paper proposes that we could express the displacement function of the member with the b - spline theory , calculate its differential coefficient and express it into the moments and shears of the sections , then set up equations and solve them to get the displacement function
在分析厚板转换层在水平荷载下的内力时,将实体墙、框架等构件的位移函数用b样条来表示,然后对位移函数求导,表示成截面的弯矩、剪力,进而建立静力平衡方程,求解方程得到位移函数。 - The rayleigh - ritz method is used to lead to analytical expressions for the stiffness and mass matrices and load vector as well as their sensitivities , which uses the simple polynomials to define assumed displacement functions , geometry and construction of wing structures . excluding some selected terms from the displacement functions or using stiff springs at the specified locations imposes boundary conditions . the accuracy of calculated results is improved by including transverse shear effects and using multiple sets of ritz functions in the analysis
它使用简单多项式作为ritz基函数、定义翼面的几何和结构参数,利用rayleigh - ritz方法导出翼面结构的刚度矩阵、质量矩阵和载荷向量及其灵敏度的解析表达式,通过排除位移函数中某些选定的项或在指定点使用约束弹簧施加各种边界条件,考虑横向剪切变形和使用多组ritz基函数改进分析的质量,使用等效蒙皮和等效夹芯技术提高计算效率。 - Using the displacement functions and the technique of double fourier transform , the governing differential equations for transversely isotropic saturated poroelastic media are easily solved and , the fourier transformed stress and displacement solutions coorespondingly are obtained . then , under the boundary conditions , the analytical solutions for half - space are presented
借助位移函数及双重fourier变换,研究了直角坐标系下横观各向同性饱和土的动力响应问题,得到了饱和半空间体在任意分布的表面谐振荷载作用下稳态响应的一般解。