算子代数 meaning in English
operator algebras
Examples
- Program : to present new research results in the representation theory of finite and infinite dimensional algebras , lie algebras , algebraic groups , quantum groups , superalgebras , vertex operator algebras , and related applications to other fields of mathematics and physics
会议内容:这次会议将交流我国及世界其它国家在以下领域中的最新研究成果:有限维及无限维结合代数的表示理论;李群,李代数,代数群,有限群,以及量子群的表示理论;顶点算子代数及其表示理论;与以上表示理论有关的数学物理及量子场论 - In chapter 5 we introduce the concepts of topological reflexivity in several topologies , namely , the discrete , the norm , the strong and the weak operator topology . we prove that the spaces of ( , ) - derivations on certain operator algebras are topologi - cally reflexive in the weak operator topology . the automorphisms and ( , ) - derivations of reflexive algebras in banach spaces are also characterized in this chapter
在第五章中我们引进了在离散拓扑、范数拓扑、强算子拓扑和弱算子拓扑下的拓扑自反性,证明了某些算子代数上( , ) ?导子空间在弱算子拓扑下是拓扑自反性的,同时我们还刻画了自反代数的自同构和( , ) ?导子。 - So we must abstract and summery the principle and method of sptial operator algybra . based on which then digesting and absorbing , we should develop the effective dynamic simulation software based on spatial operator algebra , for the sake of providing effective simulation software for the elecmechanical project sphere of
但由于美国对我们保密,此类软件无处购买,且其原理与方法亦各自分散在有关资料文献中,因此我们必须提炼和总结soa的基本原理和方法,并在此基础上消化吸收,进一步开发基于空间算子代数的动力学仿真软件,为我国机电工程各有关领域的产品开发提供高效动力学分析工具。 - In this paper , the spatial operator algebra theory has been dissertated systemtly it is the great contribution to project , science and appled mathematics for the multibody system dynamics based on the spatial operator algebra . it compared mechanics with cebernetics , signal process and other relevant subjects , and find out their common points , and applicated the algorism structure developed by kalman and riccati to the resolvation of multibody system dynamics , and realized the mutual penetrate from mechanics to cebernetics . in the future , such penetrate will be strengthened more , so which will form the ideal and unitive base of mechatronical project subject
本文系统地论述了空间算子代数理论体系,基于空间算子代数的多体系统动力学是对工程、科学和应用数学的重大贡献,它通过比拟力学和控制以及信号处理等相关学科,找出这些学科的共同点,把kalman , ricatti等发展的计算结构和方法应用到多体系统动力学解算,实现了力学与控制学科的相互渗透,在将来通过不断深入研究,这种学科的交叉与渗透必然会进一步加强,由此可进一步奠定机械电子工程学科完美统一的理论基础。