罚函数法 meaning in English
penalty function method
Examples
- To assure astringency , some technologies have been used such as iterative penality function methods , assemblage mass matrix , reduced integration algoritlun , newton iteration method with parameters for non - linear equation set , introducing relax factors and double steps solution and so on , and an algorithin for solving the nonlinear equation set of flow field by fem has been presented
基于有限元法建立了流场求解列式,为保证其收敛性,采用了迭代罚函数法,集中质量矩阵,缩减积分计算,带参数的newton迭代求解,引入松驰因子及双层解法等技术,提出了一套适合流场有限元方程计算的非线性方程求解方法。 - The general nonlinear programming problem and the basic assumptions under which our convergence results hold are introduced in chapter 2 . in chapter 3 , we give the definition of the mpf which our method is based on , the mpf method and the trust region algorithm . the convergence results for the mpf method , some aspects concerning the practical implementation and some concluded remarks of the method are discussed in chapter 4
第一章为绪论部分,第二章介绍本文收敛性理论所需要的一般非线性规划问题的最优性条件和基本的假设条件,第三章给出修改的罚函数的定义,修改的罚函数法,以及第步迭代所用的信赖域算法,第四章讨论修改的罚函数法的收敛理论,数值实验和由修改的罚函数法得出的一些结论。 - Such methods are generally decreasing method , such as , feasible direction methods , constrained variable metric methods , etc . another class is sub - problems method , which approximates the optimal solution by solving a series of simple sub - problems , such as penalty function methods , trust region methods , and successive quadratic programming sub - problems , etc . the same property of two classes of methods is that they determine whether the next iterative point is " good " or " bad " by comparing the objective function value or merit function value at the current point and next iterative point
另一类叫做子问题算法,这种算法是通过一系列简单子问题的解来逼近原问题的最优解,如罚函数法、信赖域算法、逐步二次规划算法等。这两类算法的一个共同特点是,通过比较当前点和下一个迭代点的目标函数值或评价函数值来确定迭代点的“优”或“劣” ,若迭代点比当前点“优”则该迭代点可以被接受,否则须继续搜索或调整子问题。 - The second chapter reveals the mathematical essence of entropy regularization method for the finite min - max problem , through exploring the relationship between entropy regularization method and exponential penalty function method . the third chapter extends maximum entropy method to a general inequality constrained optimization problem and establishes the lagrangian regularization approach . the fourth chapter presents a unified framework for constructing penalty functions by virtue of the lagrangian regularization approach , and illustrates it by some specific penalty and barrier function examples
第一章为绪论,简单描述了熵正则化方法与罚函数法的研究现状;第二章,针对有限极大极小问题,通过研究熵正则化方法与指数(乘子)罚函数方法之间的关系,揭示熵正则方法的数学本质;第三章将极大熵方法推广到一般不等式约束优化问题上,建立了拉格朗日正则化方法;第四章利用第三章建立的拉格朗日正则化方法,给出一种构造罚函数的统一框架,并通过具体的罚和障碍函数例子加以说明。