matrix factorization meaning in English
矩阵因子分解
Examples
- The traditional methods are to solve the linear algebra equations directly , based on matrix factorization such as lu decomposition . with this kind of methods , the " true " solution can be derived if there is no consideration of the round error
解线性代数方程组的传统方法是利用lu分解等直接求解,虽然传统方法具有理论上直接得到真解的优点,但当系数矩阵条件数很大时,存在严重的稳定性问题。 - Principle component analysis ( pca ) , as a classical method for feature extraction , learns holistic representations of facial images , while non - negative matrix factorization ( nmf ) , a recently proposed approach , learns parts - based representations of faces . however , we argue that nmf can not only learn parts - based representations but also holistic ones with different sparseness constraints
在众多的特征提取算法中,基于全局特征提取的主元成分分析( principlecomponentanalysis , pca )是讨论最多的经典算法,与此对应的是基于局部特征提取的非负矩阵分解( non - negativematrixfactorization , nmf )算法。 - In this thesis , we propose an efficient nmfs + rbf aggregate framework for fr , in which non - negative matrix factorization with sparseness constraints ( nmfs ) is firstly applied to learn either the holistic representations or the parts - based ones by constraining the sparseness of the basis images , and then the rbf classifier is adopted for pattern classification
本文提出了一种基于非负矩阵稀疏分解( non - negativematrixfactorizationwithsparsenessconstraints , nmfs )和rbf神经网络的人脸识别方法。通过控制稀疏度, nmfs算法既可提取人脸全局也能提取局部特征,再运用rbf神经网络进行模式分类。 - Different from other rank reduction methods , such as pca ( principal component analysis ) and vq ( vector quantization ) , nmf ( nonnegative matrix factorization ) can get nonnegative , sparse basis vectors which make possible of the concept of a parts - based representation
与pca (主分量分析)和vq (矢量量化)等降维算法不同, nmf (非负矩阵分解)算法能够分解出非负的,稀疏的特征矩阵和编码矩阵,能够提取原始数据向量的局部特征,使基于局部特征进行分类的聚类算法更容易实现。