| 1. | Probe into the education of hypothesis testing and interval estimating 对假设检验与区间估计教学的探讨 |
| 2. | The interval estimates about the ratio of parameters in the two exponential distributions 两指数分布总体参数比的区间估计 |
| 3. | Interval estimates of simple step stress accelerated life testing for the power weibull model 分布损伤失效率模型常应力下的参数估计 |
| 4. | This dissertation investigates the interval estimate for the parameter in poisson distribution , which is a basic , but important problem in mathematical statistics 本文研究了数理统计中一个最基本最重要的问题, poisson分布中的参数区间估计问题。 |
| 5. | This paper also analysises the handling method of test data and the point estimation and interval estimate method for reliability life of car transmission 并以一组轿车变速器可靠性寿命试验为例较详细地分析了试验数据的处理和可靠性寿命的点估计和区间估计方法。 |
| 6. | The sequential method of interval estimates of parameters is coming up to a new development since y . s . chow [ 1 ] constructed the program of sequential confidence intervals for the mean in 1965 参数估计的序贯方法自1965年y . s . chow研究一般总体均值的序贯置信程序后而出现了一个崭新的发展局面。 |
| 7. | Here , two topics : two - stage and pure sequential procedures are probed into . from finite to pure sequential steps , the two enrich sequential interval estimates by different means 本文探讨2个主题:两步抽样与纯序贯抽样,从有限步到纯序贯,这2个主题运用不同的手段丰富了序贯区间估计的研究内容。 |
| 8. | Precision and reliability are two contradictory aspects of the theory of interval estimates . to find a confidence interval of prescribed width and prescribed probability is of groat importance in practical applications , arid thereby sequential procedures have to be employed in many cases 精确度与可靠度是区间估计理论中互相矛盾的两个方面,寻找同时满足精确度与可靠度的区间估计在实际应用中具有重要价值。 |
| 9. | Firstly , by numerical and theoretical analysis , the author compares some existent confidence intervals , for example , " exact " confidence interval , wald confidence interval and bayesian confidence interval , and finds some deficiencies points of the confidence intervals , whose modification version has been proposed . also , several better confidence intervals such as are also presented . secondly , for given confidence coefficient and interval width , the author constructs a class of asymptotical two - stage interval estimate procedures . at the same time , under varies restriction of confidence coefflcientent interval width , the optional sample size of the first stage has been computed by numerical computation . the numerical computation shows that the method considered in this dissertation have good properties and applied value 同时,由于poisson分布的特性,我们知道不存在其参数区间长度小于0 . 5的置信区间,基于这些情况,我们主要展开了以下两个方面的研究:一是利用数值计算分析与理论分析的方法对现有的若干置信区间如“精确”置信区间, wald置信区间, bayes置信区间等进行分析比较,发现了一些缺陷,针对这些缺陷,我们进行适当的修正,并得到几种性质较好的置信区间如:修正大样本区间jeffreys原则下置信区间二是针对已给定的置信系数与区间长度,我们提出了一种渐近的两阶段区间估计程序,并利用数值计算的方法,在各种置信系数与区间长度限定下,算出了最优的第一阶段观测次数(抽样量) ,大量数据表明,本文考虑的方法性态良好,具有应用价值。 |
| 10. | In view of the fact that the genetic algorithm of stochastic programming based on random simulated technology has succeed greatly , this paper points out that changing parameters of genetic algorithm can obtain a sequence of optimum values of goal function . taking these genetic algorithm values as sampling data , we can get fitting optimum function by using multivariate spline regression and get the lipschitzs constant of the fitting optimum function . so for any chance constrained programming problem , we can get its interval estimate 鉴于基于随机模拟技术的遗传算法在求解随机规划问题上的优越性,本文指出,改变遗传算法的参数条件,在此基础上求得机会约束规划的若干个最优值,以这些最优值为样本点,利用多元样条回归,拟合得到最优值函数,进而求出最优值函数的lipschitzs常数,从而对于任一机会约束规划问题,都可以得到它的一个区间估计。 |