| 1. | An improved wilson - method and its computational stability 法及其算法稳定性 |
| 2. | New advances in research on some difference schemes in nonlinear computational stability 若干差分格式非线性计算稳定性研究的新进展 |
| 3. | Problems on nonlinear computational stability of the difference schemes of evolution equations 发展方程差分格式的非线性计算稳定性问题 |
| 4. | The method can improve the computational stability and accelerate the calculation speed to some degree 5 、复杂背景下的目标识别一直是人们关注的问题。 |
| 5. | Computational stability of explicit difference schemes of forced dissipative nonlinear evolution equations 强迫耗散非线性发展方程显式差分格式的计算稳定性 |
| 6. | Computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations 强迫耗散非线性发展方程显式差分格式的计算稳定性 |
| 7. | In another part , apagoge is used in this paper to tell us that not all the stability conditions deduced by the heuristic method are the necessary computational stability conditions , which should be given attention in their applications 在文章的另一部分,反证法的运用表明了从启示性方法推导来的稳定性条件并非全都是必要条件,在应用中应引起注意。 |
| 8. | The fourth - order explicit upwind - biased compact difference schemes are used in the spatial discretization of the nonlinear convection terms . these difference schemes can be used in all computational region including the boundary neighborhood , and can overcome the difficulty not adapting simultaneously in the boundary neighborhood for general three - dimensional fourth - order central difference schemes , and improve computational stability a nd resolution . the compact difference equations with high accuracy and resolution for solving the incompressible n - s equations and perturbation equations are composed of these compact difference schemes , and provides an effective numerical method for the investigations of the turbulent spots and coherent structures 文中发展了四阶时间分裂法用于navier - stokes方程及其扰动方程的时间离散;对分裂得出的关于压力的poisson方程和关于速度的helmholtz方程,建立三维耦合四阶紧致迎风差分格式;这些格式适用于包括邻近边界点在内的计算区域,克服了三维各自用四阶中心差分格式离散不适用于边界邻域的困难,并提高了稳定性和分辨率,用这些格式分别组成了数值求解navier - stokes方程及其扰动方程的高精度、高分辨率的紧致差分方程组,为湍斑及湍流相干结构的研究提供了有效的数值方法。 |
| 9. | Important missing aspects are : turbulent flow , numerical discretization techniques specially the relevant and difficult topic of numerical treatment of advection and related numerical methods of solution , variable property fluids , boundary layers , stability , etc . rather , it focuses on more primitive and fundamental issues of numerical treatment of advective equation and proper formulation of initial boundary value ( ib vp ) . numerical problems associated with advective dominated transport include spurious oscillation , numerical dispersion , peak clipping , and grid oriention . however , the key of numerical solution of three - dimensional advective problem is searching for a high - precision interpolating function , which can keep the computational stability and low damping 3 、针对三维纯对流方程提出了实用的拟协调单元模式,并与线性插值模式和协调单元模式比较后表明,在物理量大梯度变化的情况下,线性插值模式会产生较大的数值阻尼,导致解的失真;协调单元模式具有极高的计算精度和良好的计算稳定性,还可较好地克服数值阻尼,但由于计及物理量的二阶导数项,计算工作量大,边界条件给定尚存在一定的困难;而拟协调单元模式不仅具有协调单元模式计算精度高的优点,还避免了物理量的二阶导数项,可大大地减少计算工作量。 |