| 1. | Constructing common quadratic lyapunov functions for a class of 一类稳定矩阵的共同李雅普诺夫函数的构造 |
| 2. | 5 . the function of weak lyapunov functions in stabilization design is studied 探讨弱李雅普诺夫函数在镇定设计中的作用。 |
| 3. | In the theory of stability for large - scale systems there are mainly two kinds of analysis approaches 分析大系统稳定性的方法主要是李雅普诺夫函数法。 |
| 4. | Conditions for permanence is established via the method of comparison involving multiple liapunov functions 进而,利用李雅普诺夫函数和比较定理确定了持续生存的条件。 |
| 5. | 4 . the decisive function of control lyapunov functions in robust stabilization and stabilization design is studied 探讨控制李雅普诺夫函数在鲁棒镇定和镇定设计中的关键性作用。 |
| 6. | In the second chapter , the permanence for an autonomous delay competition model of lotka - volterra type is considered by means of liapunov functionals 在第二章,利用李雅普诺夫函数研究了离散时滞lotka - volterra竞争系统的持久性。 |
| 7. | Furthermore , according to the method of liapunov functions in the stability theory , both the globally asymptotic stability and the attractive regions of the nonnegative equilibrium in the model are discussed 同时,对系统解的吸引域以及平衡态的全局稳定性,采用李雅普诺夫函数法进行完整的讨论。 |
| 8. | A sufficient condition of quadratic stability for the impulsive and switched systems is given with a switching law by way of convex combination and single lyapunov function 在有限个备选状态反馈控制器的条件下,利用凸组合技术和李雅普诺夫函数等方法,给出脉冲切换线性广义系统二次稳定的充分条件及切换律的设计。 |
| 9. | The lyapunov function is used to analyze the convergence of the general learning rule , and it is proved in theory that the general learning rule has the inherent factor which adjusts the coefficient values to gain the minimum error 通过理论推导,用李雅普诺夫函数分析和验证通用参数学习规则的学习收敛性,揭示参数学习算法朝最小误差方向调整参数的内在因素。 |
| 10. | In the fifth chapter , by using the direct lyapunov method and adding some conditions on the controlling function of the derivate of lyapunov function , we get some sufficient conditions on stability and unstability of the impulsive differential system 在第五章中,运用李雅普诺夫直接方法并对李雅普诺夫函数导数的控制函数加以限制,得到了脉冲微分系统稳定性及不稳定性的若干充分条件 |