| 1. | Since these eigenfunctions are equations we can graph them . 由于这些本征函数是方程,所以我们能以图来描绘。 |
| 2. | It can always be arranged that degenerate eigenfunctions are orthogonal . 总可以做到使得简并的本征函数是正交的。 |
| 3. | We always reject zero as an eigenfunction on the ground of physics . 根据物理上的理由,我们总是剔除把零作为本征函数。 |
| 4. | The procedure described above applies to the eigenvalues and eigenfunctions of any hermitian operator . 用上述运算方法也能求出任一厄密算符的本征值和本征函数。 |
| 5. | In fact, we could make the substitution and still wind up with the correct eigenfunctions and eigenvalues . 事实上,我们可以做这种代换而仍能绕弯得出正确的本征函数和本征值。 |
| 6. | The parity of the eigenfunction is found by determining what happens to the wave function when r is replaced by -r . 本征函数的宇称可以这样确定:当r用r代替时看波函数的变化。 |
| 7. | the value of the stationary states but also the corresponding functions ψ(orψ=ψe), the so-called eigenfunctions. 并且还给出相应的函数(e),这就是所谓的本征函数。 |
| 8. | since we get continuous rather than discrete allowed values for e≥0, the positive-energy eigenfunctions are called continuum eigenfunction. 由于对E0得到连续的而非分立的允许值,正能量的本征函数叫做连续谱本征函数。 |
| 9. | If only the eigenvalue of a and not the eigenfunctions are desired, it is not necessary, according to section 3. 3, to obtain the transformation matrix s . 假如仅需求出A的本征值而不要求出本征函数,那么按照本章第33节,就不必求出变换矩阵S。 |
| 10. | The eigenvalue and eigenfunction of a coupled quantum oscillator 二维耦合量子谐振子的本征值和本征函数 |