| 1. | Nurbs curve equation contains two shape parameters , i . e . control convex and the weight factor Nurbs曲线方程包含了两个形状因子:控制顶点和相应控制顶点的权因子。 |
| 2. | The following flags control vertex processing behavior for the hardware abstraction layer ( hal ) and reference devices 下面的标识为硬件抽象层和引用设备控制顶点处理的行为。 |
| 3. | The algorithm iteratively perturbs every control point to reshape the control net by inputting data points one by one 逐个输入数据点后,通过对控制顶点进行扰动来求取新的控制顶点。 |
| 4. | Moving control convex will change the shape of nurbs curve , while altering the weight factor will also vary the shape of nurbs 移动控制顶点可以改变曲线的形状,而改变权因子也会影响曲线的形状。 |
| 5. | In the existing curves and surfaces formulations , a shape is designed by moving the control points of curves or surfaces 摘要在现有的曲线曲面设计中,曲线曲面的形状是通过控制顶点或数据点来确定的。 |
| 6. | A new algorithm is presented in this paper for piecewise quadric b - splines curve reconstruction from scattered data in a plane 摘要基于控制顶点扰动的思想提出了一种新的曲线重构算法,用于构造一条分段二次b样条曲线来逼近平面上的散乱数据点。 |
| 7. | The great modification of shape of nurbs curve can be got by moving the control convex adaptably , while the less diversification is made when the weight factor changed 移动控制顶点适合于对形状作较大的修改,而改变权因子适合于对形状作微调。 |
| 8. | An approach of representing circular arcs with nurbs of degree two was given by others , but it was based on the hypothesis that the arc angle is less than n 李强等在已知三个型值点时,通过直接给出控制顶点和权因子的方法得到用二次nurbs精确表示圆弧的方法,但只给出圆弧的圆心角小于的情况。 |
| 9. | The first algorithm gives unique result unaffected by the handling order of points concerned , and it calculates the control vertexes at once without estimation and correction 第一种算法的特点是重建结果不依赖于顶点的处理顺序,不需要进行控制顶点的初估及修正,可使各控制顶点的计算一次完成。 |
| 10. | In the third chapter , we present a class of c2 - continuous spline curves of degree 4 with some shape parameter . the segmented curves are all shape preserving to given polygon 第三章提出一类c ~ -连续的带有形状参数的四次样条曲线,曲线上的所有曲线段的控制顶点由给定多边形的顶点直接计算产生。 |