齐次方程 meaning in Chinese
homogeneous eqation
homogeneous equation
Examples
- Variation principle of piezothermoelastic bodies , canonical equation and homogeneous equation
压电热弹性体的变分原理及正则方程和齐次方程 - Deng , li and liu extended the result to a more general class of k ( x ) , with the topology introduced in ( 0 . 3 ) , we prove the stability and asympototic stability of the steady states of ( 0 . 2 )
Deng , li和liu把这个结果推广到一般的k ( x ) 。我们将证明非齐次方程平衡解的稳定性。 - As for nonlinear problem , the approximation schemes and the error analysis of pti are investigated , in order to avoid the computation of inverse matrix , the pti with dimensional expanding is proposed . the methods of constant , linear , sinusoidal approximation are proposed for the transformation of non - homogenous terms
通过增维技术,该算法将非齐次方程齐次化,从而避免了矩阵求逆,并给出非齐次项常数近似、线性近似和正弦余弦近似的处理方法。 - Because the questions of partial differential equations make green function method studied difficultly for student , the variation of parameters formula and ordinary differential equation are put forward . initial value of ordinary differential equation and the boundary value of ordinary differential equation are discussed . green function with time and green function without time are introduced and theirs equations and conditions are calculated
基于偏微分方程问题造成学生学习green函数方法的困难,我们以常微分方程为切入点,从学生熟悉的参数变动法解非齐次方程出发,讨论了非齐次常微分方程的初值问题和边值问题,引入含时green函数和与时间无关的green函数,得出它们应满足的方程与条件,分析这些green函数最一般的性质及物理含义,从而验证了通常green函数方法在数学上的合理性,在此基础上总结并规范了green函数方法解决问题的基本思想和步骤。 - In chapter 2 , we study the regularity of solutions of some second order differential equations . in chapter 3 , we study the regularity of solutions of higher order non - homogeneous differential equations where coefficients are rational functions or super entire functions . in chapter 4 , we study the regularity of solutions of higher order homogeneous differential equations where coefficients are super meromorphic functions
其中第二章研究了某些二阶方程解的正规性;第三章在系数分别为有理函数和超越整函数的情况下研究了高阶非齐次方程解的正规性;第四章在系数为超越亚纯函数的情况下研究了高阶齐次方程解的正规性;第五章则是假设在方程系数为正规亚纯函数的条件下得到的解的增长性方面的结果。