非退化的 meaning in Chinese
nondegenerate
nonsingular
Examples
- Finally , we give a simple condition for nondegeneracy of symmetric bilinear forms on infinite dimensional vector spaces
最后,我们给出有限维向量空间中对称双线性型非退化的简单条件。 - It discusses the non - degeneration of higher - order cib functions . it gives an analysis of the methods of constructing orthogonal matrixes in bibliography [ 5 ] and [ 18 ] , proves that the functions obtained using these methods are all degenerated ; gives a conclusion that all the 2 - order functions are degenerated for the case of weight 8 ; presents a simpler proof for the theorem " all the 2 - order cib functions are non - degenerated for the case of weight 8k + 4 ' in bibliography [ 5 ] ; provides an example of non - degenerated balanced 2 - order cib for the first time . 4
分析了文献[ 5 ]和[ 18 ]中高阶相关免疫布尔函数的构造方法,指出其所获得的函数都是退化的;证明了重量为8的2阶相关免疫布尔函数都是退化的;给出了文献[ 5 ]中结论“重量为8k + 4的2阶相关免疫布尔函数都是非退化的”的分析性证明;首次给出了一个非退化的平衡高阶相关免疫布尔函数的实例。 - It gives a detailed study on the non - degenerated boolean functions with correlation immunity and presents a better bound for such functions . it provides the analytic equation of g ( k ) in bibliography [ 5 ] ; by analyzing linear structures of cib , it proves that the concept of linear structure and degeneration of cib for the case of weight 4k + 2 are equivalent ; provides a sufficient condition on which cib functions are non - degenerated for the case of weight 4k ; based on these results , a method of constructing non - degenerated cib is given
得到了文献[ 5 ]中g ( k )的解析式;通过分析函数的线性结构,证明了重量为4k + 2的相关免疫布尔函数的非退化性和非线性结构是等价的;给出了重量为4k的相关免疫布尔函数非退化的一个充分条件;在此基础上,给出了重量为4k + 2 、 4k的非退化的相关免疫布尔函数的构造方法。 - Under the assumptions of non - convexity and non - degeneration , it is proved that the solutions of the initial - boundary problem to this viscoelastic model tend towards the travelling wave solution of the corresponding cauchy problem time - asymptotically for zero boundary speed and small initial perturbation by a weighted energy method
对粘弹性模型,用权能量方法证明了在非凸非退化的情形下,当边界速度为0 ,初始值具有小扰动时,具初边值问题的解收敛于相应的柯西问题的行波解。