非平面运动 meaning in Chinese
non-plane motion
out of plane motion
Examples
- The numerical results show the existence of chaotic motion in the planar cantilever and the nonplanar cantilever
数值模拟结果证实平面运动悬臂粱和非平面运动悬臂梁都存在混沌运动。 - The chaotic motion of the planar cantilever and the nonplanar cantilever are investigated by the numerical simulation
利用数值模拟方法研究了平面运动悬臂梁和非平面运动悬臂梁的混沌运动。 - The dynamic properties of the nonlinear planar cantilever and the nonlinear nonplanar cantilever are investigated , the main contents are as follows
本文研究了非线性平面运动悬臂梁和非线性非平面运动悬臂梁二种模型的动力学特性,主要研究内容有以下几方面。 - The global bifurcation analysis of the nonlinear nonplanar cantilever is given by a global perturbation method developed by kovacic and wiggins . it is found that the nonlinear nonplanar cantilever can undergo the hopf bifurcation , heteroclinic bifurcations and silnikov - type homoclinic orbit to saddle focus , which means that the nonlinear nonplanar cantilever can give rise to the chaotic motion in the sense of smale horseshoes
利用kovacic和wiggins的全局摄动法对非线性非平面运动悬臂梁进行了全局动力学分析,发现系统存在hopf分叉和异宿分叉,并证明系统有silnikov型鞍焦点型同宿轨道,可以产生smale马蹄意义下的混沌。 - The equations of motion for the nonlinear nonplanar flexible cantilever are derived by using the generalized hamilton ' s principle . then , the galerkin procedure and the method of multiple scales are used to give the perturbation analysis of the system and the average equations . the three resonant cases are considered in this dissertation
对于非线性非平面运动悬臂梁,利用广义hamilton原理详细推导了运动微分方程,综合运用galerkin离散方法和多尺度法对非线性非平面运动悬臂梁的动力学方程进行摄动分析,得到了三种共振情况下的平均方程。