×

辛空间 meaning in Chinese

symplectic space

Examples

  1. In this paper , two kinds of bilinear functions have been mainly discussed , and symplectic space been only simple introduced
    摘要该文旨在阐述二类双线性函数的联系、区别,并初步介绍了辛空间的概念。
  2. By introducing dual variables , the dual governing equations and boundary conditions , which are composed by mixed variables under whole state space , are obtained
    引入对偶变量,进一步建立使问题化为在以混合变量组成的全状态辛空间中的控制正则方程和初边条件。
  3. While the new components having the same numbers with these original physical vectors are introduced and the new components are combined with those original physical components to form a new symplectic space , the ray problem of wave propagation in geometrical optics is converted into the problem of lagrange submanifold in the symplectic space
    通过引入波向量(慢度向量) ,将物理空间中几何光学的射线问题转化为辛空间中的lagrange子流形(超曲面)问题。
  4. In this paper , by means of the euler systems on the symplectic manifold , the bargmann system and the neumann system for the 4f / lorder eigenvalue problems : are gained . then the lax pairs for them are nonlinearized respectively under the bargmann constraint and the neumann constraint . by means of this and based on the euler - lagrange function and legendre transformations , the reasonable jacobi - ostrogradsky coordinate systems are found , which can also be realized
    本文主要通过流形上的euler系统,讨论四阶特征值问题所对应的bargmann系统和neumann系统,借助于lax对非线性化及euler - lagrange方程和legendre变换,构造一组合理的且可实化的jacobi - ostrogradsky坐标系? hamilton正则坐标系,将由lagrange力学描述的动力系统转化为辛空间( r ~ ( 8n ) , )上的hamillton正则系统。

Related Words

  1. 辛克托雷斯
  2. 辛克维奇
  3. 辛孔
  4. 辛苦
PC Version

Copyright © 2018 WordTech Co.