误差限 meaning in Chinese
errror limit
margin of error
Examples
- Limit of intrinsic error
基本误差限 - Results show that different measuring methods , owing to the difference of accuracy calculating formula , result in different error tolerance
结果表明,不同的面积测算方法,其面积精度计算公式不同,同等级误差限差值也不同。 - Fresh inlet temperature range which satisfies given error limits is achieved , and the effect of instrumentation precision on accuracy of test results is analyzed by calculating and analyzing uncertainties of sensible effectiveness tests
通过对显热效率测试的不确定度的计算与分析,得出了满足给定误差限的新风进口温度范围,并分析了仪表精度对测试结果准确度的影响。 - In chapter one , we propose a new mixed method called characteristics mixed finite element method for a convection - dominated diffusion problems with small parameter e : we handle the convection part whth backward difference scheme along the characteristics , obtain much smaller time - trunction errors and avoid numerical dispersion on the front of the peak curve of the flow : we use a lowest order mixed finite element method to deal with the diffusion part , so this scheme can approximate the unknow function and its following vector with high accuracy at the same time
第一章中我们对小参数对流占优扩散问题提出了新的数值方法? ?特征混合有限元方法,即对方程的对流部分采用沿特征线的后退差分格式求解,以保证较小的截断误差限并避免了在流动的锋线前沿数值弥散现象的出现;对流动的扩散部分采用最低次混合元方法求解,以保证格式对未知函数及伴随向量的同时高精度逼近。由于该方法中检验函数可取分片常数,此格式在某种意义上具有局部守恒性质。 - This paper proposes a new algorithm adopting the multi - trajectory dynamic tunneling technique and the error - limitation dynamic changing technique to train the bp neural networks . the simulation results are provided for three different examples to demonstrate the performance of the proposed method in overcoming the problems of initialization and searching efficiency . the performance of the conventional dynamic tunneling technique and the multi - trajectory dynamic tunneling technique in training bp neural networks are also given and compared in this paper
并将该算法在xor 、某医药公司物流数据和kddcup三个数据集上进行了测试,对传统动态隧道技术训练bp网络算法( dttbp ) 、单纯使用多轨道思想的动态隧道技术训练bp网络算法( smdttbp )和本文提出的使用多轨道动态隧道思想结合动态修改误差限方法的多轨道动态隧道训练bp网络算法( mdttbp )的实验结果进行了对比分析,证明提出的算法可以有效地避免陷入局部极小,同时也提高了传统动态隧道技术训练bp网络算法的搜索效率。