×

解的延拓 meaning in Chinese

continuation of solutions

Examples

  1. Continuation of solutions
    解的延拓
  2. In this paper , we compare two kinds of local maps . from the anti - integrability limit , we study the question whether the equilibria at the anti - integrability limit can persist or not with growing coupling coefficient e
    我们在这篇文章里主要比较两类性质不同的局部函数,从反可积的极限出发,随着耦合系数的增大,讨论平衡解的延拓和分支。
  3. We reduce the cauchy problem of equations ( 8 ) , ( 9 ) to an equivalent integral equations by the fundamental solution of a second order partial differential equation . then using the contraction mapping principle and the extension theorem of the solution we prove the existence and uniqueness of the global generalized solutions and the existence and uniqness of the global classical solution
    先是通过一个二阶偏微分方程的基本解,把imbq型方程组归) , p )的初值问题转化为等价的积分方程组,然后利用压缩映射原理、解的延拓定理等证明了归) ,问的初值问题的整体广义解和整体古典解的存在唯一性
  4. In the third chapter , we will study the existence and uniqueness of the classical global solution and generalized global solution to the periodic boundary value problem and the cauchy problem for this kind of equation . in the second chapter , we study the following nonlinear wave equation of higher order : with the initial boundary value conditions or with where a1 , a2 , a3 > 0 are constants , ( s ) , f ( s0 , s1 , s2 s3 , s4 ) are given nonlin - ear functions , u0 ( x ) and , u1 ( x ) are given initial functions . for this purpose , by green ' s function of a boundary value problem for a fourth order ordinary differential equation we first reduce the problem ( 1 ) - ( 3 ) to an equivalent intergral equation , then making use of the contraction mapping principle we prove the existence and uniqueness of the local classical solution for the intergral equation
    本文分三章,第一章为引言;第二章研究一类非线性高阶波动方程的初边值问题的整体古典解的存在性和唯一性,以及古典解的爆破;第三章研究此方程的周期边界问题和cauchy问题的整体广义解和整体古典解的存在性和唯一性,具体情况如下:在第二章中,我们研究一类非线性高阶波动方程的如下初边值问题:或或其中a _ 1 , a _ 2 , a _ 3 0为常数, ( s ) , ( s _ 0 , s _ 1 , s _ 2 , s _ 3 , s _ 4 , )为已知的非线性函数, u _ 0 ( x ) , u _ 1 , ( x )为已知的初始函数,为此,我们先用四阶常微分方程边值问题的green函数把上述问题转化为等价的积分方程,然后利用压缩映射原理证明此积分方程局部古典解的存在性和唯一性,又用解的延拓法证明上述问题整体古典解的存在性和唯一性,主要结果有:定理1设u _ 0 ( x ) , u _ 1 ( x ) c ~ 4 [ 0 , 1 ]且满足边界条件( 2 ) ,若以下条件满足:其中a , b月0为常数, w

Related Words

  1. 延拓
  2. 拓酶
  3. 拓制
  4. 奥拓
  5. 拓郎
  6. 拓也
  7. 拓张
  8. 拓宋
  9. 邓拓
  10. 拓道
  11. 解的系统
  12. 解的校验
  13. 解的重复频率
  14. 解电
PC Version

Copyright © 2018 WordTech Co.