统计物理学 meaning in Chinese
physics, statistical
statistical mechanics
statistical physics
Examples
- Phase transition and critical phenomena in condensed matter physics and statistical physics is a quite important field of inquiry
相变和临界现象是凝聚态物理学和统计物理学中十分活跃和重要的研究领域。 - The essential task of liquid crystal statistical physics is studying macroscopic properties of liquid crystal based on molecular interaction
从分子间相互作用出发研究液晶的宏观性质是液晶统计物理学的重要任务。 - And the unbelievable increase happened in the filed of derivatives , the issued financial derivatives in 1996 is totally around 3 . 5 trillion u . s . dollars , and among these transactions , about 2 . 5 trillion u . s . dollars was otc , and the rest was happened in the official exchange
Vasicek根据vasicek随机模型推导出零息债券的平均价格,奥托在其1998年的论文中用统计物理学中的路径积分方法重新推导了基于vasicek随机模型的零息债券平均价格的定价公式,并得到了相同的结论。 - Because the materials of solid have wide applications in actual life and producing , the study of eos on solids is meaningful in many basic sciences such as thermodynamics , statistical physics , physics of condensed matter , atomic and molecular physics , geophysics , planetary science , chemical physics , etc . in this paper , we discuss the fundamental theory of eos , the relationship between the eos of solids and the mutual effect potential , the theoretical models of eos of solids and some applicable semi - empirical , semi - theoretical eos of solids
固体材料在实际生活、生产中具有广泛的应用性,所以,固体物态方程的研究对于热力学、统计物理学、凝聚态物理、原子与分子物理、地球物理、天体物理、化学物理等基础学科是有重要意义的。本论文论述了物态方程的基本理论,固体物态方程与粒子间相互作用势的关系,固体物态方程的理论模型、近似关系和具有实用价值的半经验、半理论的唯象固体态方程。 - By end of 1998 , the nominal value of derivatives transactions had happened in the official exchange within 5 years increased from 7 . 7 trillion u . s . dollars to 13 . 5 trillion u . s . dollars , meanwhile , the nominal value of derivative securities ( otc ) increased from 8 . 7 trillion u . s . dollars to 51 trillion u . s . dollars , then , the nominal value of unliquidated derivatives was total about 64 trillion u . s . dollars , and the academic field also emerged frontier science borrowing for the financial science , physics financial science , financial engineering , etc . 1973 , black and scholes put forward the differential equation that any derivative securities prices based on any non - dividend paying stock must be satisfied , that is black - scholes differential equation
Jamshidian . f在其1989年的文章中推导出零息债券的期权价格。奥托同样在其1998年的论文中用统计物理学中的路径积分方法推导出了基于零息债券为基础的期权定价模型。本文在这些学者研究成果的基础上,进行了更深层次的研究,在vasicek随机模型的基础上,打破上述学者及著名的black - scholes期权定价模型只能求解证券及其衍生产品价格平均值的限制,对零息债券和基于零息债券的期权的价格求解,并推导证券瞬时价格的分布函数。