线性最小方差估计 meaning in Chinese
linear minimum variance estimation
Examples
- In this case optimally weighted ls estimate is not a linear estimate of a parameter given input and observation anymore and can not be compared with linear minimum variance estimate
在这种情况下,最优加权最小二乘估计变成关于观测和输入的非线性估计,且与线性最小方差估计不可比。 - Linear minimum variance estimate and optimally weighted ls estimate are often used in many fields such as signal processing , control and communications . kalman filtering is the recursive version of ihe first estimate
在信号处理、控制和通讯等技术领域,常常使用线性最小方差估计和最优加权最小二乘估计对参数作出估计。 - Then we give the necessary and sufficient condition under which the optimally weighted ls estimate is identical to thu conditional mean of the parameter given input and observation , i . e . , the optimally weighted ls estimate could be optimal nonlinear estimate in the minimum variance sense
在方差阵可逆的条件下,我们发现最优加权最小二乘估计优于线性最小方差估计,进而得到了其与最小方差估计(即条件均值估计)等价的充要条件。 - For a general linear model ( input matrix is deterministic ) , under a certain conditions on variance matrix invertibility , the two estimates can be identical provided that they have the same priori information on the parameter under estimation . even if the above information is unknown only for the optimally weighted ls estimate , the sufficient condition and necessary condition , under which the two estimates are identical , is derived . more significantly , we know how to design input of the linear system to make the performance of the optimally weighted ls estimation identical to that of the linear minimum variance estimation in case of being lack of prior information
在一般线性模型(即输入矩阵为确定性)下,当两种估计都利用有关被估参数的先验信息时,二者在方差阵可逆的一定条件下可达到一致;当最优加权最小二乘估计不利用此先验信息时,存在二者一致的充分条件和必要条件,进而找到一种设计输入矩阵的方法,使得在先验信息缺乏的条件下,仍可利用最优加权最小二乘估计达到与线性最小方差估计一样优越的估计性能。