×

线性嵌入 meaning in Chinese

linear imbedding

Examples

  1. 4 . through the experiments on three different datasets , we illuminate the effective applications of lle and its improvements in the fields of high - dimensional data reduction , visualization and face recognition
    4 .通过使用三种不同数据库的仿真实例,探讨了局部线性嵌入及其改进算法在高维数据约简、可视化与人脸识别领域中的应用。
  2. In section 4 . 2 we analyze its main idea and algorithm in detail , two relevant theorems included ; section 4 . 3 provides plenty instances so to explain its nonlinear dimension reduction ability , section 4 . 4 propose a combined method that integrates the advantage of various methods . in section 4 . 5 we analyze some significant problems in lle , including the locality of manifold representation , the choice of the neighborhood , the intrinsic dimension estimation and the parametric representation of mapping . in section 4 . 6 we design an algorithm for estimating the intrinsic dimension in the base of locally linear approximation and discuss the choice of its parameters
    第四章是本文的重点内容,研究一种全新的非线性降维方法? ?局部线性嵌入方法,对它的思想和算法进行了详细的分析,给出算法两个相关定理的证明;第三节对比主成分分析,通过实例说明局部线性嵌入方法的非线性降维特征;第四节在此基础上提出了旨在结合两者优势的组合降维方法;第五节提出了局部线性嵌入方法中存在的若干关键性问题,包括流形的局部性、邻点的选择、本征维数的估计和降维映射的表示,第六节基于局部线性近似的思想提出了一种本征维数的估计方法,设计了实用算法,结合实例对算法中参数的选取进行了讨论;最后一节提出了一种基于局部线性重构的图形分类和识别方法,将其应用于手写体数字的图像分类识别实验,实验得到的分类准确率达96 . 67 。
  3. This paper deeply studies the manifold learning method called locally linear embedding ( lle ) and improves it . the main achievements in this paper are as follows : 1 . it summarizes the development of manifold learning currently , analyzes the characteristic of nonlinear dimensionality reduction methods , compares the virtues and drawbacks , and makes correlative computer experiments
    本文主要对基于流形学习的局部线性嵌入( lle )算法进行了深入的研究与改进,具体工作包括以下四部分: 1 .简要综述了当前流形学习的发展概况,对现有各种非线性降维方法的特点进行分析,比较优点和不足,并进行了相关的计算机仿真实验。

Related Words

  1. 嵌入板子
  2. 嵌入河
  3. 嵌入式
  4. 嵌入过程
  5. 嵌入坐标
  6. 嵌入河流
  7. 嵌入算子
  8. 嵌入键
  9. 嵌入生长
  10. 嵌入边缘
  11. 线性前缘驱替
  12. 线性前置属性中间表示法
  13. 线性强化
  14. 线性切趾屏
PC Version

Copyright © 2018 WordTech Co.